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Abstract

The Resource Description Framework (RDF) and Web Ontology Language (OWL)
have been widely used in recent years, and automated methods for the analysis of
data and knowledge directly within these formalisms are of current interest. Concept
induction is a technique for discovering descriptions of data, such as inducing OWL
class expressions to describe RDF data. These class expressions capture patterns in
the data which can be used to characterise interesting clusters or to act as classifica-
tion rules over unseen data. The semantics of OWL is underpinned by Description
Logics (DLs), a family of expressive and decidable fragments of first-order logic.

Recently, methods of concept induction which are well studied in the field of
Inductive Logic Programming have been applied to the related formalism of DLs.
These methods have been developed for a number of purposes including unsuper-
vised clustering and supervised classification. Refinement-based search is a concept
induction technique which structures the search space of DL concept/OWL class
expressions and progressively generalises or specialises candidate concepts to cover
example data as guided by quality criteria such as accuracy. However, the current
state-of-the-art in this area is limited in that such methods: were not primarily de-
signed to scale over large RDF/OWL knowledge bases; do not support class lan-
guages as expressive as OWL2-DL; or, are limited to one purpose, such as learning
OWL classes for integration into ontologies. Our work addresses these limitations
by increasing the efficiency of these learning methods whilst permitting a concept
language up to the expressivity of OWL2-DL classes. We describe methods which
support both classification (predictive induction) and subgroup discovery (descrip-
tive induction), which, in this context, are fundamentally related.

We have implemented our methods as the system called OWL-MINER and show
by evaluation that our methods outperform state-of-the-art systems for DL learning
in both the quality of solutions found and the speed in which they are computed.
Furthermore, we achieve the best ever ten-fold cross validation accuracy results on
the long-standing benchmark problem of carcinogenesis. Finally, we present a case
study on ongoing work in the application of OWL-MINER to a real-world problem

directed at improving the efficiency of biological macromolecular crystallisation.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Research Goal

The prevalence of Linked Open Data (LOD) under the Resource Description Frame-
work (RDF) data model has grown significantly in recent years as the uptake of
Semantic Web technologies continues to increase [13]. The RDF data model and the
Semantic Web technologies which are built on top of RDF are relatively new when
compared to venerable database technologies such as relational systems, and with
them come new challenges around scalability, the design of complex data schemas,
and methods for the analyses of data and knowledge in the RDF formalism.

Schema technologies such as the Resource Description Framework Schema (RDFS)
and the Web Ontology Language (OWL) are designed for constraining the semantics
and structure of RDF data. OWL in particular, being based on highly expressive
predicate logics called Description Logics, is capable of expressing complex state-
ments capturing knowledge about data expressed in RDE. However, this expressivity
comes at a cost. Not only is the manual construction of OWL ontologies a non-trivial
task, but software systems such as automated reasoners for OWL often call for com-
putationally complex algorithms. These two issues pose challenges around the use
of OWL as a schema language, and particularly the formal automated analysis of
RDF which has been described and constrained with OWL in machine learning and
data mining applications. Machine learning and data mining are often already com-
putationally complex in nature, and often require efficient data representations and
query mechanisms to aid in the construction of models or detection of patterns.

In recent years, methods have been developed for automated concept induction, or
the automated construction of OWL classes induced from RDF data [7, 59, 58, 57,
30, |43]]. The goals of this body of work appear twofold, firstly to address the com-

1



2 Introduction

plexity of generating OWL classes for ontologies from data and existing background
knowledge by automating their construction for addition to ontologies, but secondly
to leverage these methods to employ OWL as an expressive language suitable for
describing classification rules or cluster descriptions in machine learning and data
mining applications. However, current methods around the application of machine
learning and data mining with OWL either lack support for highly expressive class
languages like OWL2-DL, or are focused on providing support for solving particu-
lar kinds of learning problems such as supervised classification. Furthermore, these
methods do not support scaling up to solving problems with large amounts of in-
stance data and background knowledge. These limitations hinder the applicability of
such learning methods in tackling a broader range of automated learning problems
such as subgroup discovery over large knowledge-rich data sets which are becoming
more prevalent as semantic technologies are more widely adopted. One such domain
where this is particularly the case is in within the life sciences, where large experi-
mental datasets containing rich background knowledge expressed in OWL are being
produced, such as the Kidney and Urinary Pathway Knowledge Base (KUPKB) [49].

The goal of our research is to improve the state of the art of automated concept
induction in OWL and associated highly expressive DLs in terms of the efficiency
and applicability for solving a variety of related supervised machine learning and
data mining problems. The techniques we present are designed to leverage rich
background knowledge captured as RDFS/OWL over the RDF data being analysed
to induce new OWL class expressions. In this way, we treat OWL as a highly expres-
sive hypothesis language, and because the methods we have developed are likely to
generate OWL statements which are consistent with background knowledge, they
can be used to aid in the construction of OWL ontologies in a semi-automated way.
However, our primary focus is to employ OWL as a hypothesis language to support
machine learning and data mining tasks in a way which generates comprehensible
descriptions of classes and clusters to aid in human interpretation directly as a way

of revealing new descriptive knowledge in RDF datasets.

From a practical standpoint, we demonstrate how the methods we have devel-
oped to analyse RDF data by mining and classifying with OWL class expressions
can be applied to a real-world scientific domain known as biological macromolecular
crystallisation. In this domain, several of the world’s largest laboratories are work-
ing towards capturing scientific experiments using linked RDF data, primarily for

the purposes of integration and analysis. Semantic Web technologies such as RDFS
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and OWL are being used to capture an abundance of relevant background knowl-
edge which can be used to organise and classify this experimental data in interesting
ways. In this setting, we show how the application of our concept induction meth-
ods over the rich descriptions of scientific experiments can be used to aid scientists
in analysing their data with a view to increasing experimental efficiency. This do-
main is not dissimilar from many other in the life sciences which produce a lot of
knowledge-rich data with a need to analyse it with mining and classification tech-
niques. Furthermore, we demonstrate how such domains can use concept induction
methods to capture complex axiomatic knowledge as OWL ontologies. This is a use-
ful tool for domain scientists who commonly lack logical modelling skills and may

also be a source of new scientific knowledge.

1.1.2 Approach

We begin with a treatise of Description Logics which underpin the semantics of OWL,
and describe the state of the art in methods for inducing concepts as DL/OWL ex-
pressions from data such as RDF. From there, we identify key limitations with the
approaches around scalability, describe how we aim to address these with novel
methods while detailing their strengths and drawbacks. We also address the novel
problem of subgroup discovery in this setting and implement our methods, demon-
strating their efficacy over a well-known problem in this domain. We compare our
implementation, the OWL-MINER system, to another comparable existing system
known as DL-LEARNER then we show how OWL-MINER can be used in a real-world

setting to address an efficiency problem in the domain of protein crystallisation.

1.1.3 Results

We have implemented our methods in the software system called OWL-MINER and
have compared its performance with another state-of-the-art DL learning system,
DL-LEARNER, as covered in Chapter [} Over a variety of learning problems, we
consistently find that our methods not only outperform DL-LEARNER in terms of
efficiency, but at times also in the quality of the solutions found. Efficiency was
measured by the number of candidate expressions tested in a search for solutions,
as well as system speed. We conclude that our methods do indeed permit a more
efficient learning strategy which is suitable for analysing large knowledge bases with

highly expressive DLs as the hypothesis language. In Chapter[7} we go on to describe
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how our system is being integrated into a live system for supporting the analysis of
experimental data at CSIRO.

1.2 Thesis Outline

Chapter 2| presents background to the Semantic Web and the problem of knowledge
discovery in OWL knowledge-bases, as well as the machine learning and data mining
problems we consider in this space. We then describe the particular methods we
develop for learning in OWL knowledge-bases around refinement operators, and
discuss challenges and the scope of our research in addressing these.

Chapter [3| presents Semantic Web technologies such as the RDF data model, RDF
Schema and OWL ontology languages, along with Description Logics which under-
pin OWL. We then detail formal definitions of aspects of reasoning and learning with
DLs, before describing the formal machine learning and data mining settings we con-
sider around supervised classification and subgroup discovery, and present several
basic algorithms for learning in relation to these. Finally, we describe the limitations
of learning in the formal settings as described, and discuss a more suitable setting
for learning around a closed-world interpretation of DLs.

Chapter [4analyses the state-of-the-art in terms of a refinement operator for OWL,
then describes our main contribution which is a novel refinement operator for learn-
ing with highly expressive DLs. We also describe a novel extension to the operator to
handle numerical data and learning with qualified cardinality restrictions. We sum-
marise the chapter by presenting our novel refinement operator in full, and present
an analysis of its properties.

Chapter |5 presents the machine learning and data mining settings we consider
and describe novel algorithms for supervised learning which incorporate the novel
refinement operator we developed in Chapter [} We also describe and analyse a class
of quality functions for use in learning and describe a novel algorithm for learning in
this general setting. We finish by presenting unique modifications to our algorithm
to address certain limitations to learning with refinement operators over DLs.

Chapter [6] discusses our implementation, the OWL-MINER system, and presents
an evaluation against another state-of-the-art software system, DL-LEARNER. We
compare the performance of these two systems over several benchmark problems
before concluding that the OWL-MINER system appears to provide superior perfor-

mance in terms of search efficiency and of the quality of solutions found.
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Chapter [7] presents a case study in the application of the OWL-MINER system to
a problem in biology known as protein crystallisation. We begin with background
about the domain, and describe current efforts to collect, integrate and describe data
using Semantic Web technologies. We then describe how OWL-MINER is being used
to aid in the analysis of results to support efficient experimentation, which is ongoing
work.

Finally, we summarise our contributions and discuss current and future work

when concluding in Chapter
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Chapter 2

Background and Related Work

In this chapter we introduce the Semantic Web (§2.I) and the prevalence of new
datasets employing Semantic Web technologies to capture data and knowledge, par-
ticularly in the domain of life-sciences (. Our motivation is to address the lack
of appropriate methods and tools for performing machine learning and data min-
ing over such data sets using Semantic Web technologies directly. We describe the
machine learning and data mining problems we will be considering in this thesis
(§2.2) and discuss how existing work (§2.3) can be leveraged to develop appropri-
ate techniques in these areas. Finally, we outline the challenges we address in this
work to improve the state-of-the-art in machine learning and data mining over OWL
knowledge bases (§2.4).

2.1 The Semantic Web

Tim Berners-Lee, widely recognised as the inventor of the World Wide Web, pre-
sented a vision of the Semantic Web [11, 10] in 2001. The goal was to promote the
publishing of machine-interpretable data on the web to enable people and machines
to easily find and re-use the data in useful ways. Since then, the World Wide Web
Consortium (W3C) has promoted web standards for realising the Semantic Web in-
cluding technologies such as the Resource Description Framework (RDF) data model,
schema (RDFS) and the Web Ontology Language (OWL) [90]. In recent years, the
wide uptake of these technologies has seen an abundance of machine interpretable
data and knowledge being published on the web, particularly within the life sci-
ences and many other domains including those contributing to the Linked Open
Data project [13].
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2.1.1 Knowledge Discovery in the Life Sciences on the Semantic Web

As the amount of data and knowledge arriving on the Semantic Web is increasing,
there is a clear need to develop machine learning and data mining techniques for
direct application to such data. The development of such techniques for the Semantic
Web is a current research topic and preliminary studies on the application of existing
machine learning and data mining techniques over data captured with the RDF data
model and OWL ontologies have been undertaken [97]. Of particular interest is the
application of machine learning and data mining methods to knowledge-intensive
scientific data on the Semantic Web, particularly in domains where such methods

may be used for knowledge discovery to aid in scientific understanding [8].

The use of Semantic Web technologies has had significant uptake in the life sci-
ences, primarily for aiding with data integration and the formal capture of knowl-
edge. Prominent examples include SNOMED-CT [88] and the Gene Ontology (GO)
project [103] which aim to provide controlled vocabularies and structured knowl-
edge in the domains of bioinformatics and medicine. Many more ontologies for the
life sciences are emerging, such as the ChEBI ontology [25] for capturing chemistry
domain knowledge which is core to several fields of bioinformatics including drug

discovery [38].

The uptake and abundance of OWL ontologies to describe scientific data presents
an unprecedented opportunity to leverage the knowledge captured when performing
machine learning and data mining. Specifically, OWL ontologies and their associated
terms can be used to describe patterns in the data directly, which make them easily
interpretable by domain experts. Furthermore, the formal nature of OWL defines
constraints over the structure and relationships of the data it describes, which can
be leveraged by machine learning and data mining systems to confine their search
spaces for hypotheses and improve their performance, both in terms of efficiency and

hypothesis quality.

In our research, we have developed ideas with the design and implementation
of novel methods of data mining and machine learning specifically for application
directly to OWL knowledge bases. We will describe algorithms for learning and
mining which generate hypotheses directly as OWL class expressions over terms
from the ontologies used to describe the data being analysed. We will also show how
to leverage the structure imposed by OWL to improve the efficiency of the search for

hypotheses.
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2.2 Machine Learning and Data Mining

Machine learning and data mining are vast and current fields of research. In our
work, we focus on the application and analysis of several specific problems and
techniques from machine learning and data mining to discovering patterns within
OWL knowledge bases. These patterns, when captured as OWL class expressions,
aim to provide human readable hypotheses for understanding the reasons behind
the production of a pattern. In this way, our approach is similar to rule learning
which produces hypotheses which can be read by humans and understood in terms
of the language of the domain, thus providing insight into the problem being solved.
This can be contrast with non-comprehensible learning techniques such as neural
networks (NN) or support vector machines (SVM) which are effectively black-box
numerical models providing no explanatory capability in terms of the domain of the
data.

In this thesis, we are particularly interested in two closely related problems in
machine learning and data mining for application to pattern learning in OWL knowl-
edge bases which capture scientific experimental data: classification and subgroup

discovery.

2.2.1 Classification

Classification is a supervised machine learning problem which takes a labelled set of
examples and seeks to construct hypotheses which differentiate examples based on
their labels. In terms of scientific experimental data, examples may be descriptions of
experiments where their labels describe the experimental outcome, and hypotheses
which differentiate experiments (examples) with one outcome (label) from others
can be used to provide insight as to why those experiments have those outcomes.
For example, a set of chemical experiments may be labelled with one of success, or
failure. Patterns which exclusively identify those with failure and not success, e.g., that
they contain 50mM sodium acetate, could immediately provide the analyst with the

actionable knowledge needed to design successful experiments.

2.2.2 Subgroup Discovery

Subgroup discovery is a supervised data mining problem which takes a labelled set
of examples and seeks to construct hypotheses which describe collections of exam-

ples with a statistically unusual distribution of labels relative to some baseline [109].
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For instance, examples may correspond to chemical experiments evenly partitioned
into (success, failure). An interesting hypothesis may describe a large subgroup of all
experiments (examples) which predominantly contains successful experiments (75%)
with the remainder being failed experiments (25%). As this distribution of examples
is significantly different to the set of all experiments (50% success/50% failure), the
hypotheses describing the subgroup may indicate why the particular set of exam-
ples it describes are mostly successful. In contrast with the supervised classification
problem above, subgroup discovery is useful when it is unnecessary or impossible
to construct individual patterns which capture one label exclusively over another. In
this way, subgroup discovery is used as a descriptive technique for human consump-
tion, as opposed to the prescriptive approach of classification which can be used to

construct predictive models.

2.3 Learning OWL Classes

In this thesis, we focus on methods for learning new OWL class expressions which
describe example data in some way. This is a general technique which can be applied
to describe patterns in sets of example data for the purposes of machine learning and
data mining as described earlier (§2.2). For example, a set of learned OWL classes
may act as a predictive model over unseen example instances, or identify interesting
clusters or subgroups of example instances.

Various methods already exist for learning OWL class expressions from example
data based around inducing expressions in Description Logics (DLs), which under-
pin the formal semantics of OWL. These methods are closely related to those devel-
oped for addressing a similar problem in the different yet related logical formalism
of Logic Programs (LP) within the field of Inductive Logic Programming (ILP). The
following section (§2.3.1) compares learning in DLs to ILP and highlights various DL
learning techniques which were largely motivated by their applicability in ILP.

2.3.1 Comparison with Inductive Logic Programming

Despite the fact that learning in DLs is a new area of research, learning in logic-
based formalisms in general is not. The field of Inductive Logic Programming (ILP)
is a well-researched area of logic-based relational learning which employs Logic Pro-
grams (LP) as the formalism for capturing data, background knowledge and hy-

potheses. There are several key areas in which ILP differs to learning in DLs, includ-
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ing:
e Standards and uptake. The W3C recommended RDF, RDFS, OWL and XML

Schema are widely used web standards which have enjoyed significant uptake
to describe data and knowledge from many domains, particularly in the life
sciences. Existing data and ontologies published in these formalisms may be
leveraged directly to enrich and structure one’s own data for the purposes of
learning in a DL. In contrast, background knowledge and data as logic pro-
grams as used in ILP are not as widely accessible for these purposes.
Expressivity. ILP algorithms cannot be applied directly to learning in DLs
because of the mismatch in the syntax and semantics of the logics [14]. ILP
systems typically employ a Horn or definite clause hypothesis and background
knowledge representation based on Logic Programs (LP). DLs are different in
that they permit complex concepts including positive disjunction, full negation
and qualified cardinality restrictions which cannot naturally be expressed in
LP, but which may be used in a DL concept based hypothesis language. LP
systems can express multiple horn-clause definitions for predicates in learning,
which enables them to capture more complex background knowledge than a
DL knowledge-base. However, depending on the scale of the data, the results
of such complex processing can nevertheless be captured in a DL-knowledge
base.

Generality. As semantic entailment of clauses in ILP is undecidable, the syntac-
tic f-subsumption notion of generality over clauses in ILP is often used as a de-
cidable substitute for comparing the generality or specificity of clausal hypothe-
ses. In many DLs, a natural notion of generality is that of concept subsumption
based on model inclusion for which decidable algorithms are known!. Concept
subsumption in DLs is a semantic notion of generality which, when constrained
by terminological background axioms (TBox), naturally constrain the space of
permissible hypotheses in meaningful ways. This may be contrasted with syn-
tactic 8-subsumption in ILP where, unless mode declarations [68] are used to
control the instantiation of variables in a tight way, many irrelevant hypotheses
may be permissible which can unnecessarily inflate the search space.
Complexity. Datalog clause coverage and subsumption (determined with 6-

subsumption) in ILP are NP-complete problems [37]. Alternatively, certain DLs

n fact, most DLs are specifically designed to ensure that satisfiability is decidable. This is important
as the commonly used deductive inference tasks such as concept subsumption and instance checking
are reducible to satisfiability checking.
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such as EL71 permit PTime reasoning procedures for the analogous tasks of
instance checking and concept subsumption [4]. Despite such tasks in expres-
sive DLs having worse computational complexity (e.g. ALC for which such
tasks are PSpace-complete), highly optimised reasoning strategies exist which
make them tractable in practice [35]. A direct comparison of the complexity of
these tasks is not straightforward, as concept subsumption in a DL knowledge
base is usually performed with respect to the entire TBox?, whereas Datalog
clause subsumption in ILP can be performed in a pairwise manner without
respect to background clauses.

Language bias. For particular DLs, some language bias is captured directly
within the language and may be imposed by a TBox. For instance, the notion
of type bias in ILP [68]] may be is captured with domain and range constraints on
roles expressible directly in the language of DLs, restricting their applicability
to certain classes. Additionally, mode declarations in ILP are irrelevant when
learning in DLs as DLs are variable-free.

Closed vs. open world assumption. Typically, ILP systems will assume a
closed world (CWA), whereby all facts or data not currently known to the system
are assumed to be false. In contrast, DLs in the context of OWL typically
make the assumption of an open world (OWA), whereby no logical conclusions
may be drawn from facts or data which are not currently known. With OWL,
which is underpinned by DLs, an open world suits the nature of the intended
application which is to describe data on the web, not all of which is feasible to
capture in any one system for analysis such as logical reasoning. However, the
chosen assumption has direct implications on the method and computational
complexity of logical reasoning and related tasks such as retrieving the set of
data described by a logical expression. In ILP, such tasks are usually tractable
in a closed world as they involve algorithms of low computational complexity.
In DLs which assume an open world, especially those of high expressivity,
such reasoning tasks can have extremely high computational complexity which

poses practical limitations on the size of any knowledge base and data set.

Despite these differences, several fundamental techniques developed in ILP research

are relevant to learning in DLs. We now describe two of the most influential tech-
niques in sections and which have motivated our work.

2However, note that incremental classification is a technique which can be used to test for concept

subsumption which does not require the re-classification of the entire TBox [20].
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2.3.2 Non-standard inferences

Deductive inference problems in DLs are well-studied, including concept subsump-
tion and instance checking. More recent research into so-called non-standard inferences
in DLs include techniques for generating concept expressions from instance data via
the most specific concept (msc) procedure (similar to constructing the so-called bottom
clause with saturation in ILP) and the least common subsumer (lcs) for concept expres-
sions without disjunction (analogous to the least general generalisation (Igg) of clauses
in ILP) [5]. The LCSLEARN algorithm for the DL C-Classic [18] employs the msc
and lcs for inducing concepts from instance data in the way the ILP system GOLEM
[67] learns clauses in a bottom-up manner. SONIC is a recent implementation of

algorithms for computing the msc and Ics in the more recent ££* language [106].

2.3.3 Refinement operators

Motivated by techniques in ILP, refinement operators for generalising or specialising
hypotheses to traverse the hypothesis search space have been researched for a num-
ber of DLs including ALER [7], £L [57] and even highly expressive DLs such
as SROZQ(D) which underpins OWL2-DL [58]. Implementations of DL learn-
ers which implement a top-down search with refinement operators include DL-
LeEARNER [56]] and DL-FOIL [30], the latter of which implements a covering (separate-
and-conquer) approach for the DL ALC based on the well-known FOIL algorithm
in ILP [78]. YINYANG [43, 29] is another DL learner which combines top-down and
bottom-up refinement search also in ALC. Each of these implementations are de-
signed to induce a single concept expression which classifies instance data with high
accuracy. FR-ONT [55] uses top-down refinement for the DL £L for discovering fre-
quent patterns in a DL knowledge base akin to the WARMR [48] algorithm for data
mining in ILP. Recently, DL-LEARNER was extended [73] to learn in the probabilistic
DL known as crRALC [19].

Systems which perform concept induction exclusively in the formalism of DLs
using refinement based search have been described recently. Most notably, DL-
LEARNER [56] is a system for DL concept learning over highly expressive DLs sup-
porting supervised classification and unsupervised learning. Indeed many of our
methods and our implementation, the OWL-MINER system, were designed around
improvements to the methods employed by DL-LEARNER. OWL-MiNER differs from

DL-LEARNER in its ability to support a variety of data mining and machine learn-
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ing tasks including subgroup discovery. Also, while the search procedure that DL-
LEARNER employs is based on refinement, it is not guided by the distribution of data
in the knowledge base in the way we have developed the specialisation operator for
OWL-MiINER. Other work on DL concept induction for supervised classification in-
clude the YINYaNG [43]] and DL-FOIL [30] systems which employ the less expressive
DLs ALC in their hypothesis languages. FrR-ONT is another implementation of a
concept learner in the DL known as ££77, roughly corresponding to the OWL-EL
profile, and is designed to compute frequent queries in a data mining setting [55]. In
contrast, OWL-MINER uses a more expressive hypothesis language, permits highly
expressive background knowledge, and is capable of other learning tasks such as

subgroup discovery.

2.4 Challenges and Scope

Many challenges remain in developing novel or adapted data mining and machine
learning methods for direct application to knowledge discovery over data and knowl-

edge in DL knowledge bases. The key areas which we focus on in this thesis are:

e Learning under a closed world assumption. So far, most research has focussed
on DL learning settings which rely upon checking the coverage of induced
concepts with computationally expensive methods, namely, knowledge-base
satisfiability checking via entailment. This makes machine learning and data
mining in this setting a difficult prospect, because coverage which is likely to be
computed many times in a learning procedure in this way can be prohibitively
expensive for highly expressive DLs and large knowledge bases which contain
a lot of data and knowledge assertions. Additionally, coverage checking via en-
tailment under an open world assumption may not permit the computation of
examples described by expressions which describe all data in a domain, such as
Vr.X, which states that all examples in the tuples of role r are of type X, which
are assumed to be unknown in an open world. These limitations can be over-
come by learning in a closed world setting, which is traditionally employed in
data mining and machine learning. However, learning which assumes a closed
world over a knowledge base and constraints defined with open world seman-
tics poses challenges. Of these challenges, the most significant is that of correct
coverage computation, and the induction of satisfiable concept expressions with

respect to the background knowledge base.
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o Efficiently learning qualified cardinality restrictions (QCRs). Qualified car-

dinality restrictions (such as the concept expression =

r.X describing how any
instance in the domain of » must have at least four r-successors) pose significant
challenges in DL learning as they vastly expand the search space. Optimised
methods for handling learning in the presence of QCRs in the hypothesis lan-
guage, such as when learning expressive OWL classes, are needed.

e Learning in DLs with various concrete domains. Research into learning in
DLs has so far largely focussed on concept induction exclusively over abstract
domains without handling concrete domains such as numerical data. Scientific
data on the Semantic Web includes numerical data, and learning procedures
which cope with numerical features together with abstract data are required for
knowledge discovery in this context. Preliminary work on handling concrete
domains with refinement operators has been developed and implemented in
DL-LEARNER [56, 104], however many data mining methods based on search
with refinement operators have yet to be explored over DL knowledge bases
with concrete domains.

e Subgroup discovery. Techniques for performing subgroup discovery over OWL
knowledge bases are interesting as they can have the potential to be aided by
high-quality background knowledge of various forms [3] for improving hy-
pothesis quality and restricting the hypothesis search space. While related work
exists on identifying frequent patterns in ££ knowledge-bases with the WARMR
algorithm [55], very little work exists in the context of subgroup discovery in
DL knowledge bases which can be useful sources of highly expressive back-
ground knowledge. In many scientific domains, such analyses are also useful
for gaining insights into experimental data sets.

o Efficient algorithms for mining large DL knowledge bases. Research into DL
learning has so far focussed primarily on theoretical aspects such as learnabil-
ity, various component techniques such as refinement operators and proof-of-
concept implementations of the application of various techniques from ILP as
outlined in section However, efficient algorithms for mining knowledge
bases using DLs with a large amount of data and background knowledge have
not yet been explored. This focus is motivated by the observation that knowl-
edge bases employing RDF and OWL are now capable of handling millions
to billions of RDF statements. Results in this area are generally applicable to

mining of data on the Semantic Web, a current research topic [97], and are ap-
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plicable in real-world domains in which vast amounts of data produced as RDF
and described with OWL can be analysed with automated mining and machine
learning techniques. The domain of biological macromolecular crystallisation,

which we explore in a case study in Chapter [/} is an exemplar.

While many challenges remain, we are motivated to focus on the aforementioned
areas which are specifically applicable to knowledge discovery in the life sciences
on the Semantic Web. In particular, we address an important real-world problem in
structural biology, protein crystallisation, for which experimental data and knowledge
are being made available with Semantic Web technologies which has motivated our
work. Protein crystallisation is typical of other life sciences with data and knowl-
edge on the Semantic Web in that it is a highly knowledge-intensive domain which
seeks to use RDF and OWL primarily for the purposes of data integration and min-
ing [71]. Furthermore, protein crystallisation is a field which can benefit greatly
from comprehensible knowledge discovery tools to aid scientists in gaining a deeper
understanding of the field. Throughout the thesis, we will use examples from the
domain of protein crystallisation, and provide a case-study into the application of

the techniques developed in this work in Chapter[7]

2.5 Summary

In this chapter, we have introduced the Semantic Web (§2.1) and the uptake of Se-
mantic Web technologies in capturing important datasets and knowledge-bases in
the life sciences (§2.1.1). The current lack of tools for performing machine learning
and data mining over these datasets is the motivation for the work in this thesis.
We discussed how our work is focussed on developing three useful and general ma-
chine learning and data mining techniques (§2.2) for application to analysing OWL
knowledge bases, and existing work in this area (§2.3). We then described the state-
of-the-art in learning in OWL knowledge bases and highlighted the primary areas
which we address to progress work in this area (§2.4).



Chapter 3

Preliminaries

In this chapter we present the basic formalisms around the data models, logics and
learning methods which are used throughout this thesis. While most of these prelim-
inaries presented in this chapter reflect established work as referenced throughout,
Section describes a novel closed-world setting for learning with DLs which we

build upon for our other novel contributions in DL learning in subsequent chapters.

3.1 The RDF Data Model

3.1.1 The Resource Description Framework: RDF

The Resource Description Framework (RDF) is a widely-used model for capturing graph-
based data which is recommended by the World Wide Web Consortium (W3C) for
describing data on the web. RDF prescribes the use of International Resource Identi-
fiers (IRIs) to identify resources, and relates these with other IRIs representing certain

relationships between them. For example, consider the following;:

|"caIC|um salt Anxsd: strlngl | "498.4334" "/‘xsd double | | "fertilizer"~~xsd:string |
rdfs label xdx: mo[Wf gmol rdfs:label

obo:synonym obo:has_part obo:has_role

¢ rdf:type
| "saltpeter"~~xsd:string |

Figure 3.1: An example RDF graph describing information about the chemical cal-
cium nitrate. The graph combines resources from various namespaces including the
ChEBI ontology for describing chemical compounds. It describes calcium nitrate as
belonging to the class of calcium salts labelled CHEBI_35156, also known as saltpeter,
as having a molecular weight of 498.4334 g/mol and a part which is a calcium(2+)
ion, and having a role of fertilizer.

17
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In Figure resources are identified with ellipses, directed arcs represent named
properties (also by IRI) which relate resources. Rectangles represent literals which are
XSD Schema types, such as strings or doubles. An RDF database corresponding to a
graph consists of a collection of triples, which are tuples of the form (subject, predicate,
object). Table 3.1 represents several triples from the graph of Figure

(xdx:calcium_nitrate, rdf:type, obo:CHEBI_35156)
(xdx:calcium_nitrate, xdx:molWt_gmol, "498.4334"~"xsd:double)
(xdx:calcium_nitrate, obo:has_role, xdx:fertilizer)
(obo:CHEBI_35156, rdfs:label, "calcium salt"”~"xsd:string)

Table 3.1: A partial set of RDF triples corresponding to parts of the graph from

Figure

In this way, RDF is a flexible data model which can be used to describe arbitrary
objects, relate objects together via properties, and attribute objects to concrete data
such as numbers or strings. RDF is associated with two other W3C recommended
standards which describe schema languages for RDF graphs, which are discussed in

the next section.

3.1.2 RDF Schema Languages: RDFS, OWL

Elements of an RDF graph may be described and constrained in various ways us-
ing two particular schema languages known as RDF Schema (RDFS) and the Web
Ontology Language (OWL).

3.1.2.1 RDFS

RDFS is a schema language which can be used to categorise and constrain RDF
resources in several basic ways. Firstly, RDFS can define classes which describe the
type of a collection of RDF resources. For example, obo:CHEBI_35156 is an RDF
class (which is is itself an RDF resource) which represents “the class of all things which
are calcium salts”. In Figure the resource xdx:calcium_nitrate is asserted to be
a member of this class via the rdf:type property.

RDEFS can also be used to capture relationships between RDFS classes, such as
the fact that obo: CHEBI_35156 is a subclass of the more general class xdx: Compound,
or obo:CHEBI_ 33287 (the class of fertilizers) is a subclass of xdx:Role, as shown in

Figure Such relationships can be used to construct detailed class hierarchies
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obo:has_role

xdx:Compound xdx:Role

obo:CHEBI_3515
obo:CHEBI_33287

xdx:calcium_nitrate xdx:fertilizer

obo:has_role

Figure 3.2: An abstract RDFS diagram representing the class hierarchy between
obo:CHEBI_35156 (calcium salts) and all chemical compounds xdx:Compound, and
where the resource xdx:calcium_nitrate is an instance of both. The property rela-
tionship obo:has_role is shown between xdx:Compound and xdx:Role to describe
the domain and range of this property, and its usage is shown between the class
instances xdx:calcium_nitrate and xdx:fertilizer.

which capture knowledge about a domain like chemistry. In this case, the resource
xdx:calcium_nitrate could be inferred to also belong to the class xdx:Compound.
Methods of inference used to determine this are described in detail in subsequent

sections of this chapter.

The use of RDF properties can also be constrained with RDFS by defining the
applicable classes of resources to be used in some property’s domain and range. For
example, the property obo:has_role may be constrained to relate resources which

are of class xdx: Compound to those of class xdx:Ro'le.

RDFS can also describe how some property may be more specific than another,
for example, by denoting that xdx:hasIon is a subproperty of obo:has_part. With
such an assertion, all triples with the property xdx:hasIon may be inferred to also

belong to the property obo:has_part.

3.1.2.2 OWL: The Web Ontology Language

OWL brings much more expressivity than RDFS for describing restrictions on classes
and properties over RDF data and RDFS classes and properties. As it is the focus of
this thesis to employ OWL as the primary hypothesis language for learning, it is

introduced and treated in more detail in the next section.
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3.2 OWL and Description Logics

The Web Ontology Language (OWL) is a schema language for RDF that extends
RDFS with a variety of expressive language constructs for defining classes, properties
and their relationships to capture knowledge about domains. In addition to RDFS
constructs such as subclass, sub-property, and domain and range assertions, OWL

can be used to define complex restrictions on class definitions.

3.2.1 Description Logics

OWL is underpinned by Description Logics (DL) [6], a family of knowledge repre-
sentation languages based on decidable fragments of first-order logic (FOL) which
have well-understood computational properties. The semantics of OWL is expressed
directly in terms of the semantics of DLs and has a correspondence to the semantics
of RDF!.

Description Logics have a variable-free syntax for describing concepts (e.g. Com—
pound, Role, known as classes in RDFS and OWL, corresponding to unary predicates
in FOL), roles (e.g. hasPart, hasRole, known as properties in OWL, corresponding
to binary predicates in FOL), and individuals (e.g. calcium_nitrate, corresponding to
constants in FOL, or resources in RDF). DLs also describe relationships between these
elements, such as the axiom CalciumSalt C Compound to declare that CalciumSalt is
a subclass of Compound, and the assertion CalciumSalt(calcium_nitrate) to assert that
calcium_nitrate is an instance of the class CalciumSalt. Collections of such axioms
and assertions together form a DL knowledge base, which is often separated into two
components: the TBox which maintains terminological knowledge (concept and role
axioms), and the ABox which maintains assertional knowledge (concept and role in-

stance assertions).

Definition 3.2.1. (Knowledge base K) A DL knowledge base is a pair K = (T, A)
where T is the TBox, A is the ABox.

Definition 3.2.2. (Signature of a Knowledge Base) The signature of a DL knowledge
base K is the triple (Nc, Nr, Ni), where N is the set of all concept names, N is the set of
all role names, and Ny is the set of all named individuals. Nc, Ng and Ny may be considered

pairwise disjoint?.

Thttp:/ /www.w3.org/TR/owl2-rdf-based-semantics/#Correspondence Theorem
2The technique of punning in knowledge bases permits these sets to overlap under certain circum-
stances, and is supported in OWL2. See: https://www.w3.org/ TR /owl2-new-features/#F12: Punning
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Description Logics permit the construction of new concepts with logical con-
structs which can be used to combine existing concept and role terms. For example,
for concept names C, D and role r, conjunction is denoted by C 1 D, disjunction by
C U D, negation with =C, and existential role restriction as Jr.C denoting the set of
all individuals which have r-successors which are instances of C. Different families of
DLs are defined by their inclusion (or exclusion) of various constructs such as these.
Two simple DLs which often form the basis of extensions to other DL languages are

ALC (attributive language with complement) and £L (existential language).

Definition 3.2.3. (£L and ALC concepts) Given a set of concept names N¢ and role names
Ng, the syntax of EL and ALC concepts are defined inductively as follows:
e All A € Nc (atomic concepts), T (top), and L (bottom) are ALC and E L concepts;
e Where C, D are EL concepts, the following are also £L concepts:
— CMN D (conjunction), Ir.C (existential role restriction)
e Where C, D are ALC concepts, the following are also ALC concepts:
— CM D (conjunction), C U D (disjunction), =C (negation)

— 3r.C (existential role restriction), Vr.C (universal role restriction).

Various extensions to ALC and £L concepts are identified with labels and include

the following:

ALC with transitive roles, e.g. r(i,),r(j, k) — r(i, k)

Role hierarchies, e.g. s C r where 1,5 € Ng

Role composition (ros C t), e.g. (i, j),s(j, k) — t(i, k)

Nominals, e.g. concept {i} where i € N

Inverse roles, e.g. inv(r(j,i)) <> r(i,j)

Qualified cardinality restrictions, e.g. =3r.C, <6s.D

DO NSIR RO

Concrete domains and datatype roles, e.g. 3r.double[> 5.6]

The latest OWL specification (W3C OWL2) describes several profiles corresponding to
DLs with various levels of expressivity, including EL, RL, QL, and DL. In this work,
we primarily consider the highly expressive OWL2-DL profile which corresponds to
SROZQ(D) [42]°.

Definition 3.2.4. (DL expressivity ¢, all concepts Ly) The expressivity of a particular

DL ¢ is the language consisting of the set of permissible constructs for defining concepts,

3See http://www.w3.org/TR/owl2-direct-semantics for more details.
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assertions and axioms. The expressivity implies a set of all possible concepts expressible
within that DL, denoted L.

OWL permits so-called concrete domains to describe elements other than abstract
individuals, such as numbers, strings and boolean values, as well as other user-
defined types. In the OWL specification, concrete domains include those which are
modelled to permit restrictions over literals of the various XML Schema types per-
missible in RDF graphs. These restrictions are known as facets which are operators
ranging over a set of concrete values, such as the expression int[> 5|, representing
all integers [6, o), and boolean combinations thereof, such as double[(> 5N <6) V (>
6 A\ <7)] representing all double values in the ranges [5,6) and (6,7). This language
gives us the ability to capture subsets of numbers in the concrete domains of integers
or doubles.

The semantics of DL concepts are defined by a first-order interpretation over a set
of elements called the domain of interpretation A that maps concept expressions to

subsets of A, and roles to pairs of elements of A.

Definition 3.2.5. (Interpretation) An interpretation is a pair T = (A, -T) defined over
the signature (Nc, N, Np) of a knowledge base (Definition where AT is a non-empty
set, and -* maps:

e Concepts C € Nc to a subset CcL c AL

e Roles r € Ng to a subset rT C AT x AZ;

e Individuals i € Nj to an element iL € AZ.

The syntax and semantics of various DL concept constructs are shown in Table

Similarly, the semantics of concrete domains D are defined as follows.

Definition 3.2.6. (Concrete domain D) A concrete domain D describes a domain set AP
and a set of predicates pred(D), known as the predicate names of D. Each predicate name

P € pred(D) is associated with an arity n and an n-ary predicate PP C (AP)".

Example 3.2.7. The concrete domains R, Z and N each respectively represent the set of all
reals AR = R, integers AZ = Z, and non-negative integers AN = IN. The set pred over

these domains each contains the binary predicate names <, <, >, >.
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Construct Syntax | Semantics

Concept assertion C(i) Tect

Role assertion r(i, ) (it,ity e r?

Top T T =AM

Bottom L 1T=0

Negation -C (=C)f = AT\ C?

Nominal {i} (i} C AL (i =1

Conjunction cCnbD | (cnD)f=ctnD?

Disjunction cubD (C uD)t =ctuD?

Existential role restriction 3r.C {x|3y.{x,y) e L Ay € CT}
Universal role restriction vr.C {x|Vy.(x,y) e T =y e C}
Min. quantified role restriction | *"r.C | {x|#{y.(x,y) € T Ay € CT} > n}
Max. quantified role restriction | S"r.C | {x|#{y.(x,y) € T Ay € CT} < n}
Exact quantified role restriction | ="r.C | {x|#{y.(x,y) € rf Ay € C*} = n}

Table 3.2: The syntax and semantics of ALCOQ concepts where C, D are concepts, r

is a role name, i, j are individuals, and #S denotes the cardinality of set S.

Example 3.2.8. Consider the following interpretation I; over concepts representing chemical

compounds and elements:

A = {x,nag,clo,
Yy, mgo,cly, cly,
z,mgx, citp }
Nah' = {nap}
Cllv = {cly,cly,cly}
Mgh = {mgo,mg:}
Citrateh = {city}
hasParth = {(x,nap), (x,cly), (x: sodium chloride)
(y,mgo), (y,cly), (y,cla), (y: magnesium dichloride)
(z,mg1), (z,city) } (z: magnesium citrate)

Given this interpretation, we can define the following concepts:

(3hasPart. T)1 = {x,y,z} (chemical compounds)

(3hasPart.C1)5 = {x,y} (chloride salts)

Consider the concept:

(Z2hasPart.C1)5 = {y} (salts with > 2 chloride ions)
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Note that under Z,, we find that cllz1 #* clIl, as otherwise there are not at least two chlorine
atoms for individual y to be an instance of (*hasPart.Cl). Consider a different interpre-
tation, I, which is defined similarly to I, except that it maps cllz2 = CIZIZ, resulting in
(2hasPart.Cl)%2 = @. While atypical for DLs generally, the DLs which underpin OWL do
not make assumptions about the distinctness of differently named individuals, however the

unique name assumption may be used to ensure this.

Definition 3.2.9. (Unique Name Assumption) An interpretation I respects the unique
name assumption (UNA) if, for any two named individuals with different names i # j,

they are mapped to different elements where i* # j*.

As described in Table an interpretation Z can also be applied to the TBox

which consists of a set of axioms of the form C C D called inclusion axioms.

Definition 3.2.10. (Interpretation satisfies/models TBox) An interpretation I satisfies
(is a model of) a TBox T (written as T |= T) iff Ct C D? holds for each axiom C C D in
T.

Definition 3.2.11. (Consistency) A knowledge base K is said to be consistent iff there

exists at least one interpretation which is a model of KC (Z = K).

Definition 3.2.12. (Subsumes) A concept D subsumes concept C (written as C T D) iff
CT C D? holds for all interpretations I. A concept D strictly subsumes concept C (written
as C C D) iff Ct € D? holds for all interpretations I. (Strict) subsumption in the context
of a TBox T is denoted C T+ D (C Cr D) iff Ct C D* (CT < D?) holds for all models
IE=T.

Definition 3.2.13. (Equivalent) A concept C is equivalent to concept D (written as C =
D) iff CT = D7 holds for all interpretations . Equivalence in the context of a TBox T is
denoted C =7 D iff Ct = D holds for all models T |= T. Note that C =1 D is equivalent
to the case where both CC D and D C Carein 7T.

Definition 3.2.14. (Instance) An individual i € A” is called an instance of concept C if
T - I
i eCh.

Definition 3.2.15. (Interpretation satisfies/models ABox) An interpretation I satisfies
(is a model of) an ABox A (written as T |= A) if, for all individual assertions ¢ € A, we
have T |= ¢ where:

o T|=C(i)ifi’ € CT;

o T |=r(i,j) if (it, %) € L.
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Definition 3.2.16. (Concept satisfiability) A concept C is said to be satisfiable iff there
exists at least one interpretation T where CT # @. C is said to be satisfiable wrt T iff there
exists at least one model T = T where CT # Q.

Definition 3.2.17. (Interpretation satisfies/models knowledge base) An interpretation
T satisfies (is a model of) a knowledge base IC = (T, A) (writtenas T |= K) iff T =T
and T |= A.

Definition 3.2.18. (Entailment) A knowledge base K is said to entail some statement ¢
(written as K |= ¢) iff, for all interpretations T which are models of IC (where I = K), we
have T |= ¢. For example, if K = C(i), then it must hold that i* € C* for all interpretations
T which are models of IC (where T = KC).

There may be multiple interpretations which satisfy (are models of) T, A, or K.

Furthermore, there are subtleties in the interpretation of asserted knowledge which
we illustrate in Example 3.2.19

Example 3.2.19. Consider the follow knowledge base K = (T, A) where:

T = {Inorganic = —~Organic,
Na U ClU Mg C Inorganic,
Citrate C Organic,
Compound T 3hasPart.T }
A = {Na(nay),Cl(cly),Cl(cly),Cl(cl),
Mg(mgo), Mg(mgy), Citrate(city),
hasPart(x, nap), hasPart(x, cly),
hasPart(y, mgo), hasPart(y, cly), hasPart(y, clz),
hasPart(z, mgy ), hasPart(z, city) }

The interpretations 1, and I of Example are models of both A and T, as they
matche all assertions in A, and satisfy all axioms in T, therefore K is consistent. Note
that K W~ (Z%hasPart.Cl)(y), as not all interpretations which are models of K entail this

(namely, T, does not). Furthermore, consider the concept:
(VhasPart.Inorganic)
Because (Na U Cl LI Mg C Inorganic) € T, we might expect that

K |= (VhasPart.Inorganic)(x) and K |= (VhasPart.Inorganic)(y)
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as these do not have inorganic parts asserted to A. However, both of these entailments would
not follow in DL knowledge bases which make the open world assumption. This is because it
is assumed that there may exist other hasPart-successors of x or y which are not inorganic,

but are simply currently unknown, such as (x,cit) € hasPart?.

Example highlights the important fact that typically, DL knowledge bases
make the open world assumption. This choice is made to reflect the desire that knowl-
edge bases should have incomplete knowledge of the world, and to minimise the
chance that the addition of new assertions do not render the knowledge base in-
consistent. However, in Example we may want to assume that A contains all
information relevant to a domain, and that further assertions are not possible. In
this case, we may wish to make the closed world assumption (CWA), which permits us
to assume that our knowledge base is complete. If we use the CWA, we effectively
restrict the set of models Z |= K to those where no more assertions exist beyond
A and any entailments from 7, such that in Example we would find that
K = (VhasPart.Inorganic)(x) and K = (VhasPart.Inorganic)(y). This is an impor-
tant concept for machine learning and data mining which we will explore in more
detail in Section B.5l

3.2.1.1 Reasoning Tasks in Description Logics

Given a knowledge base, the set of assertions in .4 comprise the base set of explicit
information asserted about a domain, such as that certain named individuals repre-
sent chemical compounds. When combined with a non-empty set of axioms in 7T,
more assertions may be implied, such as in Example which showed how certain
instances belong in the interpretation of complex concepts like those defining sodium
salts. Inference algorithms for DL reasoning are employed to compute such implicit in-
formation within DL knowledge bases, and are often implemented for particular DL
languages. Implementations of such algorithms are called DL reasoners. For example,
the CEL system* is designed to compute inferences for the DL £L£+, and Pellet® is
designed to compute inferences for several DLs including ££ up to SROZQ. There
are several standard inference tasks for DLs which include terminological reasoning
such as: checking for knowledge base consistency; concept subsumption and equiva-
lence; and assertional reasoning which focuses on individuals, such as instance checking

and retrieval.

4CEL reasoner homepage: http://lat.inf.tu-dresden.de /systems /cel /
SPellet reasoner homepage: http://clarkparsia.com /pellet
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Definition 3.2.20. (Instance Checking) For some knowledge base K = (T, .A), instance
checking is the problem of verifying if, for some individual i € Ny and concept C, that i is an
instance of C for all interpretations T of K, where it € CZ (denoted K |= C(i)). Note that if
K |= —=C(i), we may conclude that i is not an instance of concept C (denoted IC [~ C(i)), as

otherwise KC would be inconsistent.

Definition 3.2.21. (Instance Retrieval) For some knowledge base K = (T, A), instance
retrieval is the problem of determining the set of instances of some concept C, denoted
Re(C) ={i e N;|K = C(i)}-

Definition 3.2.22. (Classification of a Knowledge Base) For some knowledge base K =
(T,A), classification is the problem of determining all entailments of the form KC |= (C C
D), where C, D are concepts in the signature N¢ of K.

The task of classification is often used to re-organise the subsumption hierarchy
of all concepts in the signature N¢ of a knowledge base by determining where each
concept sits in terms of subsumption to every other concept in N¢. Generally, in-
stance checking and retrieval are often tied to the problem of classification which
must be performed to ensure completeness of the entailments. Classification and re-
trieval can be computationally expensive procedures in practice, as they both require
analysis of the relationships potentially between each concept in N¢ and individual
in Ny respectively.

Implementations of reasoning algorithms over DL knowledge bases are often de-
signed to achieve certain desirable computational properties, including soundness,

completeness and decidability.

Definition 3.2.23. (Soundness) Given a knowledge base IC, an inference algorithm which
derives conclusion ¢ from KC (written as K = ¢) is said to be sound iff, for all inferred

conclusions, KC |= ¢ (all conclusions are valid).

Definition 3.2.24. (Completeness) An inference algorithm is said to be complete iff for a
knowledge base IC and some conclusion ¢ where KC |= ¢, it is also true that the algorithm will
derive K 1= ¢.

Definition 3.2.25. (Decidability) Given a knowledge base K and any statement ¢, K is
said to be decidable if there exists an algorithm t= which can compute whether K |= ¢ holds

which always terminates.

These properties are highly desirable, as soundness ensures that inferences are
valid; completeness ensures that all possible entailments with respect to the seman-

tics of the DL will be inferred; and decidability ensures that inference will never
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get stuck in a loop and will always terminate. Unfortunately, meeting all of these
properties together often comes at a cost, as most inference algorithms for expressive
DLs which are sound, complete and decidable are computationally expensive. For
example, the DL SROZQ is a highly expressive language with most reasoning tasks
having N2ExpTime complexity [47]]. This means that reasoning over SROZ Q knowl-
edge bases with very many axioms and assertions can quickly become intractable®.
Often, the source of such complexity is linked to the expressiveness of the DL. The
complexity of reasoning in SROZQ may be contrast with that of the relatively inex-
pressive DL ££7" which underpins OWL2-EL for which most inference tasks have
PTime complexity [4].

Most inference tasks including classification, instance checking and retrieval are
reducible to the problem of satisfiability checking (model checking) in a DL knowl-
edge base depending on the particular DL language used [6]. As such, instance
retrieval for any concept C in knowledge base K may require pre-classification of X,

which can be highly computationally expensive.

3.3 Machine Learning and Data Mining

In this work, we aim to describe methods for machine learning and data mining over
data and knowledge maintained in DL knowledge bases. In particular, we are con-
cerned with methods for generating new DL concept expressions as hypotheses which
describe patterns in the data. In this section, we describe the particular settings in
machine learning and data mining which we will address in this thesis, and in Sec-
tion 3.4 we describe how we apply techniques for learning concepts in DL knowledge

bases to these settings.

3.3.1 Supervised Learning Problems

Supervised learning problems typically take a set of examples £ for which each mem-
ber e, € £ has been attributed with some label w € Q) where |Q}] > 2. In this way,
the set of examples can be partitioned into sets containing examples with a common
label w, denoted £“ where & = Uyweq £“. In a supervised learning problem, we
seek to construct hypotheses h which describe certain proportions of each of the la-

belled examples of each set £“. We say that a hypothesis covers an example, denoted

®However, highly optimised reasoner algorithms do exist to handle moderately large knowledge
bases, such as the hyper-tableaux calculus implemented by the HermiT system [91]
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by the boolean function covers(h, e,), if h describes example e, where e,, € £“. With
respect to the set of all examples £, we denote the cover of hypothesis I as the set
cover(h,&) = {e € £ | covers(h,e)}.

3.3.1.1 Classification

The typical binary classification problem in machine learning has two labels |Q)] =
{+,—1}, where T are the positive examples and £~ are the negative examples. Hy-
potheses are sought which cover all positive examples Ve € £ : covers(h, e) and none
of the negative examples Ve € £~ : mcovers(h, e).

The performance of any hypothesis / in a learning problem is often assessed with
a measure function f which maps hypotheses /1 from the set of all possible hypotheses

L and their covers cover(h,£) C £ to real values.

Definition 3.3.1. (Measure Function) Given a set of labelled examples £ and the space of
all hypotheses L, a measure function is a real-valued function f : L x {€} — R which
maps pairs of hypotheses h € L and the set of labelled examples £ to a real value denoting

the performance of h over £.

In order to describe when a hypothesis & may be considered a solution to a learn-
ing problem based on its cover over a set of examples £, we define a threshold T over
f where f(h,&E) > T describes h as being a solution. A quality function is a boolean
function which succeeds when & is a solution in terms of some threshold T on a

measure function f.

Definition 3.3.2. (Quality Function) Given a set of labelled examples £ and the space of all
hypotheses L, a quality function is a boolean function Q : L x {€} +— B which maps pairs
of hypotheses h € L and the set of labelled examples £ to a boolean value denoting whether h
may be considered a solution to a learning problem over £. Quality functions are often defined

in terms of a minimum threshold T over a measure function f where Q(h, &) = f(h,€) > 1.

An example of a commonly used measure function for assessing hypothesis per-

formance in binary classification is accuracy, which is defined as follows.

Definition 3.3.3. (Accuracy) Given a labelled set of examples £ where & = |J,cq £ and
Q = {+, —} partitioned into positive examples E* and negative examples E~, a hypothesis

h and its cover C where C = cover(h, E), the accuracy function is defined as:

ace(h €) = TP+ TN
") TP4+FP+FN+TN
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where
TP = |ETNC| (true positives)
FP = |E-NC| (false positives)
TN = |E \C| (true negatives)
FN = |ET\C| (false negatives)

A quality function over accuracy may be defined as Q(h, &) : acc(h,E) > 0.95 which holds

when hypothesis h has an accuracy over 95%.

As hypotheses in classification problems are often sought to exclusively cover
examples of a single common label, they can be used for prediction. Given a new
unseen, unlabelled example 1, we may use a hypothesis & which is deemed a solu-
tion to label u by testing if covers(h, u) succeeds. The performance of a hypothesis
considered a solution for a classification problem relative to a set of labelled exam-
ples &, also known as the training set, can be tested with a fest set of unseen labelled
examples, U. Any hypothesis 1 which was induced over a training set of labelled ex-
amples £ can then be assessed for performance over unseen test data by computing
its measure f relative to . If h performs well over £ and U/, we may consider & to
be a good classification hypothesis suitable for prediction, and may use it to provide
labels for new examples. If i performs poorly over U, then it may be considered a
poor predictor. In this case, # may have been induced to over-fit the set of training
data £ such that is does not generalise well to previously unseen examples ¢/. One
approach to assessing whether / will generalise well to unseen examples is to split
the set of examples £ composed of labelled sets £“ for each w € Q) into k > 2 train-
ing and test set pairs (&;,U;) for 1 <i <k, where & C £ and U; = £ \ &;, and where
each pair (&;,U;) is composed of roughly the same proportion of labelled examples
relative to £. By training / on each &;, we assess its performance on the remaining
examples U;, and compute the overall performance as the average measure over each
set f(h,U;). This technique is known as cross validation. Partitioning the training set
into k different sets is called k-fold cross validation, as we generate k different ‘folds” of
test and training data. Other techniques also exist for ensuring that hypotheses gen-
eralise well, such as by ensuring the expressions they are composed of are as simple
as possible, according to the minimum description length principle [84] which for-
malises Occam’s razor in that “among competing hypotheses, the one with the fewest

assumptions should be selected”.
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3.3.1.2 Subgroup Discovery

Subgroup discovery is another interesting supervised learning problem [40]. Subgroup
discovery differs from classification in that hypotheses are intended only to be descrip-
tive of the examples they cover, and are not generally expected to be used for predic-
tion. Typically, a hypothesis which is considered a solution to a subgroup discovery
problem covers an interesting or unusual distribution of labelled examples relative
to the distribution in a population set of examples £. Typically, so-called correlation
measures are used to determine the performance of hypotheses which measure the
amount of deviation in the distribution of labelled examples relative to the popula-
tion. An example of a commonly used correlation function in subgroup discovery is

the weighed relative accuracy measure, which is defined below.

Definition 3.3.4. (Weighed Relative Accuracy) The weighed relative accuracy correlation
measure is a real-valued function oy, : L X € — R which maps pairs (C,E) for some
concept C € L and set of binary labelled examples £ where £ = Uyeq £ for Q = {+, -}

to a real value as follows:

+ —
Tara(h, €) = |cover(h,E*)|  |cover(h,E)]

€] €71

Example 3.3.5. Consider two sets of labelled examples, ET and £, where |E1| = 50 and
|E~| = 50. Also consider two hypotheses hy, hy where:

e hg covers 42 examples, where 3 are from T and 49 are from £~ ;

e Iy covers 46 examples, where 45 are from E1 and 1 are from £~
We define our quality function Q(h,E) which succeeds if h is sufficiently interesting to
be considered a solution as Q(h, &) = |owra(h,E)| > 0.9, which represents a significant

deviation from the set of example labels amongst £+ and E~.

Owra(ho, €) = |3 — 2] =092
Uwrg(hl,(c/‘) - g%_%| 20.88

Therefore, we conclude that hypothesis hy is interesting, while hy is not.

3.4 Learning in DL Knowledge Bases

Thus far, we have described DLs (§3.2) and several settings for learning (§3.3) which

we aim to apply to learning in DL knowledge bases by generating DL concept expres-
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sions as hypotheses. The method of learning DL concepts we will focus on is known
as induction. Induction seeks to construct new hypotheses which explain or describe
example data. In a DL knowledge base, induction means learning DL concept ex-
pressions which describe (or exclude) certain individuals, subject to constraints such
as background knowledge and quality criteria. In this way, DL concepts induced as
hypotheses in a learning problem are intended to reveal new structural knowledge

about the individuals they cover.

Definition 3.4.1. (Concept Induction) Concept induction in a knowledge base K is the
problem of computing new (complex, non-atomic) concept expressions C where, for all con-
cepts D in the signature of K, we have C # D.

In a learning problem which seeks to induce DL concepts as hypotheses, we
require a method which generates candidate concept expressions for testing, along
with methods for testing their coverage over examples. We begin by describing meth-
ods of searching for candidates (§3.4.1), describe operators used for searching a space
of concepts called refinement operators (§3.4.2), and describe how they can be used
(§3.4.3). We then conclude the section with a discussion on how hypothesis cover is
computed in DL knowledge bases, along with some important limitations (3.4.4).

3.4.1 Learning as Search for Concepts

In searching for DL concepts as hypotheses in a learning problem, we are required to
generate candidate expressions from the space of all concepts within some DL lan-
guage L. A basic method for achieving this is known as the generate-and-test method
as shown in Algorithm (I} This method enumerates every possible DL concept / from
the space of concepts £, and tests if each & is a solution to a learning problem over
the set of all examples £ with a boolean quality function Q(h, £) which succeeds
only if i can be considered a solution relative to the set of examples £. We denote
the space of DL concepts which can be composed of concept and role names from
knowledge base K with expressivity £ as L.

For most DLs, the number of possible concepts in L may be large or unbounded,
so the enumeration of all concepts for testing by Algorithm [I|is practically infeasible.
Instead, we seek to structure the space of concepts in a way which may permit a
search to be orderly and efficient. Concept subsumption (C) is one such way of
structuring the space of DL concepts appropriate for this purpose. This technique is

used in the field of Inductive Logic Programming (ILP) for structuring expressions
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Algorithm 1 A basic generate-and-test method which enumerates all concept expres-
sions in L and tests them for sufficient quality over all examples £ with the boolean
quality function Q(h, E).

1. S=Q > The set of solutions
2: forall C € L do
3: if Q(C,€&) = true then

4: S:=SU{C}
5 end if
6: end for

in Logic Programs. In ILP, methods for traversing a structured space of expressions
have been explored with functions called refinement operators. Recently, research into
refinement operators in ILP have been carried over to DLs, and various refinement
operators for a number of DLs which underpin OWL have been studied [59, 58, 57].
We now describe refinement operators (§3.4.2) which reproduces Definitions [3.4.2]
to from this existing body of work, then we will describe how to integrate
refinement operators into search-based algorithms for learning (§3.4.3).

3.4.2 Refinement Operators

The set of all DL concept expressions for some language £ can be considered as
being ordered by the subsumption relationship, C. As the relation C is a quasi-order
in that it is reflexive (C C C) and transitive (A C B and B C C imply A C C), we can
define a quasi-ordered space of DL concepts as the pair (£, C). A refinement operator is

a function which is designed to traverse concepts in this ordered space.

Definition 3.4.2. (Refinement Operator) Given a quasi-ordered space (L,C), a refine-
ment operator is a mapping from L to 2~ where, VC € L, we have:

e 0(C):{D|D € LAD C C} (a downward refinement operator);

e v(C):{D|D € LAD 1 C} (an upward refinement operator)
where each D € p(C) are called specialisations of C, and each D € v(C) are called

generalisations of C.

Definition 3.4.3. (Closure of a Refinement Operator) Given a quasi-ordered space (L,C),
a refinement operator T and some C € L, we define the closure of T for C, denoted T*(C),
as:

™(C) =(C)ut(C)u...uT(C)U...

where T°(C) = {C} and T"(C) = {D|VE € 7' : D € t(E)}.



34 Preliminaries

Refinement operators permit the search for concepts by traversing the space in a
stepwise manner with repeated application on refined concepts. For example, from
C we can reach D € 7(C), and from D we can reach E € 7(D), and so on, in a chain

of refinement steps.

Definition 3.4.4. (Refinement Chain, Reachability, Passes Through) A refinement
chain of length n > 1 with refinement operator T is a finite sequence of refinements of
individual concepts from Cy as C; € T(Cy), then Cy € ©(Cq), ..., then C, € T(Cy_1), oth-
erwise denoted by Cy ~»¢ C1 ~»7r Cg ~»¢ ... ~o¢ Cy_q1 ~»¢ Cy. If it is possible to construct a
refinement chain from concept C to some other concept D, we say that D is reachable from

C. If a refinement chain contains some concept C, we say it passes through concept C.

Furthermore, we can describe a number of useful properties which characterise
the behaviour of a particular refinement operator function 7. For example, we may
wish that a refinement operator produces true specialisations or generalisations of
some concept, and not concepts which are equivalent to the input which may other-

wise cause loops in the search, wasting computational resources.

Definition 3.4.5. (Proper, Improper Refinement) A refinement operator T is proper if, for
any D € ©(C), it holds that D # C. Properness ensures that T generates true specialisations
D C C (generalisations D 1 C) of some concept C. Otherwise, we refer to the refinement as

being improper.

Another desirable property of refinement operators is that they only produce a

finite number of concepts in the refinement of any concept.

Definition 3.4.6. (Locally Finite Refinement) A refinement operator T is locally finite
if, for any C € L, T(C) is finite and computable.

When using downward (upward) refinement operator T to reach concepts within
L, we may want to ensure that if some concept D T C (D J C), that it is reachable in
the closure of *(C). This property is known as completeness and permits a search for
concepts with p to be sure that if a concept D C C (D 3 C), it can be reached with T

from C.

Definition 3.4.7. (Complete Refinement) A downward (upward) refinement operator p ()
is complete if VC,D € L, D C C (D 3 C) implies that E € p*(C) (E € 6*(C)) where
E=D.
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Definition 3.4.8. (Redundant Refinement) A refinement operator T is redundant if, from
any concept C, it admits at least two refinement chains: C ~», ...~ D ~»_ ...~ E
which does not go through concept F, and C ~», ... ~>_ F ~»_ ... ~»_ E' where E' = E. We
say that T is non redundant if it only ever admits a single unique refinement chain between

any two non-equivalent concepts.

Redundancy is undesirable because a search for concepts with a redundant oper-
ator T may encounter the same concept more than once, potentially wasting compu-
tational resources. In the next section, we will describe basic algorithms which use

refinement operators to search a space of DL concepts for learning.

3.4.3 Concept Induction by Refinement-Based Search

While Algorithm (I demonstrated the basics of a generate-and-test search approach,
it did not define how to generate concepts for testing. We now describe how this can
be achieved through the use of refinement operators as described in Section

Algorithm 2| demonstrates this using a downward refinement operator, p.

Algorithm 2 A basic generate-and-test method which uses a refinement operator p to
search the space of concepts (£,C), and a quality function Q to assess hypothesis
performance over the dataset £. A frontier list L is maintained for all candidates to
be searched.

1 L=][T] > The hypothesis frontier of candidates
225=0 > The set of solutions
3. while length(L) > 0 do
4: C:=pop(L) > Remove C from L
5: if Q(C,€&) = true then
6: S:=SU{C} > Hypothesis C is a solution
7: else
8: forall C' € p(C) do
9: push(C’,L) > Add refinement C’ to L
10: end for
11: end if

12: end while

Algorithm [2| demonstrates how a refinement operator can be incorporated into
the search to learn hypotheses. This is a general purpose algorithm which searches a
space of concepts in £ from the top concept T and progressively specialises expres-
sions added to a list. If, on line@ a candidate concept is added to the head the of list,
the search proceeds depth-first, whereas if it is added to the tail of the list, the search
proceeds breadth-first.
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The structuring of the search space permits certain quality functions to have the
property that if a hypothesis I does not pass a quality test, then neither will all of its

(upward, downward) refinements. This property is known as (anti-)monotonicity.

Definition 3.4.9. (Monotonicity, Anti-monotonicity) For all hypotheses C,D € L and

the set of all examples &, a quality function Q is known as monotonic iff
VECE:(CCD)AQ(D,E) — Q(C,E)

and Q is known as anti-monotonic iff
VECE:(CCD)ANQ(CE)— Q(D,E)

[23].

(Anti-)monotonic functions are useful as they permit us to prune potentially large
parts of the search space away. Once a hypothesis # fails by an (anti-) monotonic qual-
ity function, then we can safely exclude, or prune, all (specialisations) generalisations
of h from the search by not considering (downward) upward refinements of h. An

example of an (anti-)monotonic quality function is relative frequency.

Definition 3.4.10. (Relative Frequency) Given a hypothesis C and a set of examples &,

relative frequency is defined as relFreq(C,&) = % [23].

Example 3.4.11. Consider the quality function relFreq(C,E) > t where 0 < t < 1 as
an anti-monotonic quality criterion for downward refinement. Consider an example where
t = 50, and two hypotheses C,D € L where |cover(C,E)| = 49. Therefore, C fails the
quality function as it does not cover enough examples. By Definition [3.4.9} we know that
all concepts D € p(C) refined down from C will never cover more examples than C, so all

refinements of C may be excluded from the search.

By adding (anti-)monotonic quality criteria to a refinement-based search algo-
rithm, we stand to improve the efficiency of the search by excluding hypotheses
which can never be considered solutions. Unfortunately, the space of concepts may
still be vast even with such pruning, so any frontier list of hypotheses candidates
such as that maintained in Algorithm 2| may still grow infeasibly large. One well-
known method for dealing with this problem is to simply fix the maximum size of
the frontier list, known as beam search. A beam search approximates the search over all

concepts reachable by some refinement operator T by restricting the search to within
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a set of candidates. Typically, the restricted size frontier (known as the beam) is only
populated with new hypotheses deemed the best relative to the set of refinements of
all hypotheses currently maintained in the beam. When the beam is of infinite width,
beam search is equivalent to breadth-first search, or best-first search if the hypothe-
ses are ranked within an infinitely sized beam. In order to rank hypotheses a utility

function is often used, which is often also called a heuristic evaluation function.

Definition 3.4.12. (Utility Function) A utility function u : L x S — R maps a pair
(C, &) where C is a concept expression C € L for some language L together with a set of
examples £ € S and maps it to a real number in R. A utility function represents the value of
a concept in a learning problem relative to the examples it describes from £ and can be used
to rank concepts C, D such as u(C,E) < u(D, £) which indicates that concept D is preferred
over C. Utility functions are often based on measures, for example accuracy (Definition [3.3.3)
or relative frequency (Definition |3.4.10).

By ordering elements of a beam relative to a utility function u, we can maintain
the list of current best n candidates of the search. In this way, u acts as a heuristic
by permitting the search to proceed into parts of the space of concepts deemed most
likely to contain solutions to the exclusion of other parts. Depending on the size of
the beam and behaviour of the heuristic, a search may reach solutions faster, yet it
may also exclude subsets of concepts from the space which contain the best solutions.
This is why such methods are known to be approximate, as they are not complete,
and may inadvertently confine a search into a sub-space of concepts where the best
solutions are not present, as illustrated in Figure where a search may become
trapped in sub-optimal local maxima.

A basic beam search algorithm by downward refinement which maintains a set
of best hypotheses relative to a utility function u is shown as Algorithm (3l This
algorithm also incorporates an anti-monotonic quality function Q to determine if
a refined hypothesis should be added to the frontier, or pruned. Note that while
accuracy (Definition can be used to rank hypotheses as a utility function, it
is neither monotonic nor anti-monotonic, so cannot be used for pruning hypotheses
from a search, unlike relative frequency.

One method of mitigating the risk that Algorithm [3|becomes trapped in a search
space around a local maxima is to introduce randomness in the search. One such
method for achieving this is known as stochastic beam search. In stochastic beam
search, the reinitialisation of the next beam (Lines |14 to is modified to select

candidates at random with a probability which is proportional to a function of their
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Algorithm 3 A basic best-first beam search with downward refinement operator p to
search the space of concepts (£, C) relative to examples £, where u is a utility func-
tion ranking better hypotheses with larger values, and where Q is an anti-monotonic
quality function assessing if hypotheses can be considered solutions. The maximum
beam width is denoted by by

1: B:= {T}

2: 5. =0

3: while |B| > 0 do

4: E=Q

5: forall C € Bdo

6: forall D € p(C) do

7: if Q(D, &) = true then
8: S:=SuU{D}

9: else

10: E:=EU{D}

11: end if

12: end for

13: end for

14: B:=Q

15:  while |E| > 0 and |B| < by do
16: D € argmaxp,_; u(D)

17 E:=E\ {D}

18: B:=BU{D}

19: end while

20: end while

> The hypothesis frontier beam of search candidates

> The set of solutions

> While the frontier beam is non-empty

> Initialise the expansion set

> Hypothesis D is a sufficient candidate

> Capture solution D

> Include D in the expansion set

> Reinitialise the beam
> Arbitrary best refinement

> Include D in the next beam
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.
»

Figure 3.3: A graph where the curve represents the space of all hypotheses (hori-
zontal axis) against their performance (vertical axis). An algorithm (such as a beam
search) which limits the search to the shaded region may only find hypotheses at
local maximum L as being best, and will fail to locate the best solution(s) at the global
maximum G.

—<(D)
T fora concept D and

utility. A common method is to use the Gibbs distribution e
some value T € R where the ¢ : £ — R is a cost function, and may be based on a util-
ity function u. This distribution reflects the intuition that stronger hypotheses should
be selected with greater probability than weaker ones. Stochastic refinement is another
approach which incorporates such random selection directly into the behaviour of a

refinement operator which refines to new candidates with certain probabilities [98].

3.4.4 The Limitations of Open-World DL Learning

Up until now, we have not defined precisely how to compute the cover of a concept
C relative to a set of examples £. One such method called learning from entailment is

to perform instance retrieval for any concept C generated in a search.

Definition 3.4.13. (Learning from Entailment) Given a hypothesis C and example e € &,

learning from entailment in a DL knowledge base IC describes the setting where covers(C, e)

iff K |= Ce).

Definition is due to De Raedt [23]], but is adapted here for use in DL
knowledge-bases. With respect to learning in DL knowledge bases, learning from
entailment poses significant practical and theoretical limitations on the search. From
a practical standpoint, instance retrieval can be a highly computationally expensive
operation. For any DL knowledge K of high expressivity such as SROZQ, instance
checking is at least exponential in the size of the TBox and ABox. Recall that our goal

is to develop methods of machine learning and data mining in DL knowledge bases



40 Preliminaries

which employ the learning as search algorithms of Section These algorithms
are designed to generate-and-test many new concepts, and rely on the computation
of hypothesis coverage to be fast. Unfortunately, to perform instance checking, new
concepts generated by refinement which were previously unknown to a knowledge
base need to be re-classified with respect to the TBox. Depending on the size of
the TBox and ABox of the knowledge base, this can be an expensive step which is
at odds with our goal of searching a space of concepts efficiently. For example, re-
classification of a SROZQ knowledge base with logical reasoning has N2ExpTime
complexity [46]. When contrasted with the complexity of querying in most other
machine learning and data mining settings which employ, for example, a relational
database to test for the coverage of hypotheses with low complexity (PTime, or even
LogSpace), this complexity is unacceptable for the sake of the performance of a learn-

ing algorithm.

Secondly, learning from entailment in DL knowledge bases is adversely affected
by the open-world assumption (OWA). For example, consider the hypothesis expres-
sion Vr.C, along with instances (e, y) and C(y) asserted to the ABox. Even with an
empty TBox, a knowledge base may not entail £ |= (Vr.C)(e) as, according to the
OWA, we do not know if there are other r-successors of ¢ which are not instances
of C. Therefore, as other interpretations exist which permit r-successors of e which
are not instances of C, e will never be attributed as an instance of this hypothesis by
entailment. Similarly, the same can be said for expressions such as <"r.C. Concept
negation such as —C is also affected for the same reason, as unless an example ¢ has
been explicitly asserted to be an instance of an expression E = —=C, a knowledge base
may not entail £ = (—C)(e) as this also remains unknown. These restrictions pose
limitations on the expressiveness of a hypothesis language such as SROZQ con-
cepts, which we otherwise desire as such a language permits powerful descriptions

of patterns in a knowledge base for learning.

Typically in machine learning and data mining, it is assumed that examples are
completely specified in that there is are missing data assertions to describe them.
This assumption is at odds with the OWA made by DL knowledge bases, where
instances are assumed to be incompletely specified. Therefore, it is reasonable to
want to make a closed world assumption (CWA) over a DL knowledge base which
permits the default assumption to reflect our intention that examples are completely
specified. However, because the CWA is highly restrictive by imposing many more

assumptions, the number of possible models of any knowledge base under the CWA
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diminishes, thus increasing the possibility of inconsistency within knowledge bases
with TBoxes based on expressive logics such as SROZQ.

In the next section, we will define an appropriate interpretation for SROZQ
concepts which reflects the CWA, and demonstrate how such an interpretation can
be used for efficient coverage checking of concepts. Such an interpretation effectively
addresses both our concerns around the use of the OWA and expensive knowledge
base entailment. We then discuss the implications of the use of the interpretation in
the context of learning relative to complex background knowledge in DL knowledge

bases.

3.5 Closed-World DL Learning

In Section we discussed the limitations of learning from entailment in DL knowl-
edge bases which make the OWA. In this section, we describe how we address these
limitations with a different setting for learning known as learning from interpretations,
which is also adapted from De Raedt [23].

Definition 3.5.1. (Learning from Interpretations) Given a hypothesis C and example
e € &, learning from interpretations in a DL knowledge base K = (T ,.A) describes the
setting where covers(C, e) iff there exists some interpretation J where J = C(e), and where
cover(C,E)={e €& | T =C(e)}and J = A

In this setting, we will be describing the use of a single interpretation J which
is at least a model of A. In practical terms, this means that 7 is a fixed model which
reflects the set of examples as all of the asserted instance data in a knowledge base.
As we will discuss in Section it may be unlikely that a DL knowledge base
with expressive TBox axioms has a single interpretation. This means that J may
not model all background knowledge, J [~ T, however we may still utilise J for
learning concepts efficiently. We will now describe an instance of such an interpreta-
tion and then discuss its advantages and disadvantages over the typical open-world
interpretation Z (Definition for learning DL concepts.

3.5.1 A Closed-World Interpretation for SROZQ Concepts

An example of an interpretation applicable for interpreting SROZQ concepts which
reflects the CWA has been described by Tao et. al. [100] as the IC-interpretation for
handling so-called integrity constraints in OWL2-DL.
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Definition 3.5.2. (IC Interpretation) The IC interpretation [100] is defined as the pair
(Z,U) = (AFHN),.BU)) over the signature (Nc, Nr, Ni) of a knowledge base K (Defini-
tion where T is a SROZQ interpretation (Definition T = (A, 1), U is the
set of all interpretations I of SROZQ knowledge base K, AZTU) is g non-empty set, a is an
individual a € Ny, A is a concept name A € Nc, v is a role name r € Ng, and where (ZU)
maps:

ATH) = IxT |x € Nys.t. VT eU,x79 € AT}

rH) = {(x%,y*) |x,y € Nys.t. YT €U, (x7,y7) € 17}
aTU) — 4T
and which extends to arbitrary concepts inductively as follows, where 4 denotes set cardinal-

ity:

TEU) = AZU)
1 (@H) %)
(_|C)(I,I/{) AZU) \ CZu)
(CnD)EH) C(ZU) A DETM)
(C L D)(IZ/{) cZu) y pTU)
{x} (@) {x:x e AW}
(Fr.O)TM = {x:x e ATH st Ty.(x,y) € rT Ay e CEUY
(vr.C) M) = {x:x € AT st Vy.(x,y) € rTH) — y e CTU}
(Z"r.C)EH) {x:x € AT st #{y.(x,y) € r T ANy € CTUY > n}
(s'.C) M) = {x:x e AT st t{y(x,y) € T Ny € CTU} < n)
In this way, the IC interpretation of atomic concepts AZ#) and roles rZ#) re-

flects what is known in K, or in other words, the sets and tuples comprised of known
individuals aZ¥)
tion[3.2.18)). Furthermore, this interpretation is defined to make the weak unique name

assumption, in that it is intended for use under a weaker form of the unique name
assumption (Definition [3.2.9).

Definition 3.5.3. (Weak Unique Name Assumption) Given a knowledge base K, the set
of all first-order models U of IC, the IC interpretation (Z,U) and two named individuals

i,j € N with distinct names i # j, the weak unique name assumption (weak UNA)
describes the case where, if VI € U : i* = jZ, then iTH) = jTU)  otherwise i(TH) # jEH),

which are entailed as instances of each (following from Defini-

Given that all instances in AZH) (AZH) . AZU)Y which are not also instances of
CZH) (r(ZU)) are assumed to lie in the negation (—C)ZH) ((—r)TH)), this reflects



§3.5 Closed-World DL Learning 43

the CWA as we desire for DL learning, and furthermore, the weak UNA permits
us to respect any entailments which a knowledge base makes about the equivalence
of individuals, and makes the unique name assumption otherwise. In terms of effi-
ciency, the interpretation of arbitrary complex concepts C may be performed directly
in terms of (Z,U ), which permits us to perform coverage checking for any concept C
by way of checking, for any individual e, if the interpretation (Z,U) |= C(e). Given
that (Z,U) is fixed, (Z,U) = C(e) is at most an ExpTime operation in the size of
(Z,U) and the concept C (§5.2.1) which contrasts favourably with the typically more
expensive K = C(e) under the OWA for expressive DLs as discussed in Section [3.4.4]
For such coverage checking to proceed for any arbitrary complex concept expres-
sion C relative to a given SROZQ knowledge base I, the interpretation (Z, /) must
first be materialised over all named individuals, concept and roles. This necessarily
requires the full classification of K with logical reasoning under the open-world in-
terpretation Z which, as we discussed in Section is computationally expensive.
However, this step is only required once, as new arbitrary concept expressions may
then be interpreted directly with (Z,U) over the atomic concepts, roles and individ-
uals of which they are comprised. In this way, (Z,U) reflects a database (which is
effectively a finite model with closed world semantics), and arbitrary complex con-
cepts can be thought of as queries to that database. This compares favourably to
the alternative of learning from entailment, where new concept expressions must
be integrated into K and re-classified using logical reasoning each time, otherwise
presenting an impediment to efficient learning by generate-and-test methods.

While we have so far argued that learning from interpretations is an appropriate
setting for machine learning and data mining over DL knowledge bases as it reflects
the CWA and permits for efficient hypothesis coverage checking, there are certain
limitations to learning from interpretation (Z,U) such as the fact it may not model
a knowledge base with incomplete data or expressive TBox axioms. We now discuss

these limitations in the next section.

3.5.2 Limitations of Learning from Interpretations in DL Knowledge Bases

Under the closed-world interpretation (Z,U), it is possible to induce a concept ex-
pression C which has a non-empty interpretation C2# # @ but where C is actually
unsatisfiable (C = @) under the standard interpretation Z with an open-world as-

sumption.
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Example 3.5.4. Consider a knowledge base K = (T, A) where A = {A(i),r(i,j), C(j)}
and T = {A C 22r.C}, describing how instances of A necessarily have two r-successors
which are instances of C. Recall that an interpretation T is a model of T if, for all axioms
C C D € T we have Ct C D? (Definition . In this example, ATH) = (i}
and (Z2r.C)TYU) = @ and therefore, (Z,U) [~ T. This is because the interpretation
(Z2r.C) M) is composed exclusively of known data in KC, and only one r-successor of i was
asserted and therefore known. If information is missing from A with respect to T, such as in
the case that instances of A are expected to have at least two r-successors yet only one was
asserted, it may lead a learning algorithm relying on (Z,U) for computing hypothesis cover-
age to produce an expression which is unsatisfiable with respect to T. In this case, one such
expression is (A1 <'r.C) where (AN S'r.C) M) = {i}, however this expression is clearly

unsatisfiable with respect to T given it contains the contradictory axiom (A C 22r.C).

Example highlights the motion of data which is missing in A with respect
to 7, in that if it is expected that examples are structured in a certain way by the
definition of axioms in 7, then data which conforms to this structure must have been
asserted to A. Otherwise, a closed-world interpretation such as (Z, /) may not model
7T . Similarly, axioms may exist in 7 which ambiguously define concepts and this has

implications for their interpretation in a closed-world, as shown in Example

Example 3.5.5. Consider a knowledge base K = (T, A), concept names A, B, C, and where
(ACBUC) € T and A(x) € A. Assume that IC [~ B(x) and KC = C(x), so that under
the closed-world interpretation (Z,U), we have BEZM) = @ and CTU) = @. However, even
though K |= (BUC)(x), we have (Z,U) = (B U C)(x) because it is unknown whether x
is an instance of B, C, or both. While the open-world interpretation I admits several possible

models of IC, the single closed-world interpretation (Z,U) is not a model of K.

Furthermore, the use of a closed-world interpretation such as (Z,U) for deter-
mining the coverage of concepts as hypotheses in a search may lead to erroneous

characterisations of performance as shown in Example

Example 3.5.6. Consider a knowledge base IKC = (T, A) where A = {E;(i), Ez2(j),r(i,k)}
and T = {E; C C,E; C C,C C 3r.T} for the labelled example classes Eq and E. In this
case, we find that (3r.T)E = {i,j,...}, however (Ir.T)EH) = {i} as no r-successor of j
is known in A. From the perspective of a machine learner performing binary classification,
the cover of hypothesis 3r.T computed by (Z,U) appears to correctly describe all instances

of example class Eq and no instances of Ep, and is thus considered a perfect characterisation
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of E1. However, clearly such a characterisation is incorrect as at least one r-successor of j is

implied by T, yet it simply remains unknown under the OWA.

The underlying problem in each of the Examples (3.5.4] 3.5.5| and |3.5.6| relates

to data which is missing in A with respect to T. In each of these examples, the TBox

implied the existence of data or knowledge which was not asserted to the ABox, such
as missing role tuples or class instance assertions. In order to make use of (Z, ) for
learning in light of these limitations, we can use it for the purpose it was originally
intended, which is to perform integrity checking of assertions in A against axioms in

7T [100].

Definition 3.5.7. (Integrity Checking) Given a SROZQ knowledge base KK = (T, A),
the task of integrity checking seeks to test, for all axioms C T D € T, if CZH) € DIH)
holds. For an axiom C C D € T, any individual i € CTH) where i ¢ DT fails the
integrity check against C C D.

Integrity checking in SROZ Q with the closed-world interpretation (Z,U/) can be
used to compute which data asserted to an ABox is known to be incomplete relative
to axioms in the TBox, subject to certain restrictions on the types of expressions in
the latter [100]. In the next section, we will discuss how integrity checking can be
used to assess the suitability of data in the ABox of a knowledge base against axioms

in a TBox.

3.5.2.1 Detecting and Handling Incomplete Data

Data in the ABox of a knowledge base which is incomplete with respect to the TBox
poses challenges to learning algorithms, as we have shown. Generally, a learning
algorithm which generates concept expressions C and assesses their performance
based on their cover with the IC interpretation is influenced by the distribution of
individuals and literals in the knowledge base relative to concept terms and sub-
expressions of which C is composed. In general, it is difficult to characterise which
missing data will influence a learner to generate problematic concepts, as this de-
pends on the particular distribution of missing data together with the particular
learning strategy being used. However, in order to minimise the possibility of en-
countering problems described in Section we may employ the use of an al-
gorithm for integrity constraint checking under the IC interpretation to determine

which individual data fails integrity checks over particular TBox axioms, such as that
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described by Tao et. al. [100], as was the original intention behind the development

of the IC interpretation.

For example, consider the case where we have knowledge base K = (A, T), con-
cepts C,D where (C C D) € T and individual i where C(i) € A. While individual
iTU) ¢ CTH) we may have i?H) ¢ DZH). Given individual i was implicated in the
failure of an integrity check on the axiom (C C D), we have several options.

Firstly, we may wish to manually repair examples which incorporate individuals
such as i by adding sufficient extra data to the ABox so as to satisfy the TBox axioms
which were implicated in the failure of integrity checks. An example e which may
be represented by an RDF graph and mapped to a particular set of ABox assertions
may contain or refer to individual i. As we know that i is incompletely defined, we
can highlight it for attention so it can be corrected. This requires a user to under-
stand precisely how to add new instance data linked to i which satisfies the violated
axioms, which may be an unreasonable assumption as axioms in highly expressive
knowledge bases such as those based on OWL2-DL may be quite complex. Notably,
this is a research problem in itself, and has been addressed with methods and algo-

rithms to automatically generate missing data [99].

Alternatively, a simpler approach is to exclude from a learning problem all ex-
amples e which contain or refer to individuals which were implicated in the failure
of integrity checks. Completely excluding examples from a learning problem may
be feasible if an insignificant proportion of examples are to be removed, however the
approach becomes prohibitively restrictive if it requires the exclusion of too many
examples which may result in an insufficient training and test set for a learning

problem.

Lastly, another approach is to prevent a learning algorithm from inducing con-
cepts which cover any individuals or literals which fail integrity checks. In this way;,
a learner will not attempt to describe any data which may be incompletely defined.
This approach prevents a learner from generating unreliable expressions which are
posed over incomplete data, effectively excluding any features they represent from
the learning problem. While this approach may also be overly restrictive if there are
many instances which violate integrity checks in many contexts, it is straightforward
to restrict a learning algorithm to avoid the induction of concepts, or subexpressions

thereof, which cover such incompletely defined data.

In the remainder of this thesis, we will make the simplifying assumption that any

IC interpretation (Z,U) does not lead to integrity violations relative to the TBoxes
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for the knowledge bases we consider. This is not an unreasonable assumption, as
often TBoxes may still model significant amounts of background knowledge using
axioms for which instance data does not violate integrity checks. TBoxes which only
contain simple inclusion axioms such as a taxonomy of named concepts, or at most
contains inclusion axioms defining concepts as subclasses of simple existential role
restrictions such as with the DL ££, will often not pose a challenge in this regard.
We also believe that the benefits of using a closed-world interpretation such as
(Z,U) for efficient concept refinement and coverage testing in learning problems
far outweigh the drawbacks which include the possibility of generating expressions
which violate axioms in 7. This is particularly the case when we aim to use concept
induction to perform analyses over the data such as data mining for patterns, where
concepts are induced to be human readable descriptions of interesting patterns, and
are not intended to be re-incorporated into the TBox, which is otherwise known as
class learning. Our approach is distinct from the goal of much of the related research
in DL learning which does focus on class learning with the intention of integrating

concepts back into a TBox.

3.5.2.2 Independence of the expressivity of induced concepts to X

The language expressivity of concepts induced by a learning algorithm can be inde-
pendent of the expressivity of the concepts which pre-exist in the knowledge base.
For example, 7 may contain complex axioms with concepts composed with the ex-
pressivity of SROZQ, however hypotheses can be confined to concepts which are
composed of logical constructs only found in ££. Conversely, the expressivity of K
may be minimal, such as when 7T is empty (without background knowledge) and
A assertions are made against atomic concepts. Hypotheses induced over such a
knowledge base can still be very complex, such as concepts induced with the lan-
guage ALCOQ(D) to capture interesting groups of individuals.

The expressivity of the language for hypotheses can be selected to suit the par-
ticular problem being solved. For example, if qualified cardinality restrictions and
disjunction are not desired in the composition of hypotheses for a given problem,
they can be omitted from the learning process by excluding their use by a refine-
ment operator as a form of language bias. This may also be chosen for performance
reasons as such constructs inflate the search space of concepts for induction. Sim-
ilarly, if assertions in a knowledge base contain concrete domain elements such as

numbers, strings and boolean values, we may wish to employ hypotheses which per-
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mit restrictions on these values even if the TBox makes no mention of these. This
may particularly be the case if we are dealing with knowledge bases which capture

numerical experimental results in which we are especially interested.

3.6 Summary

In this chapter, we have described the relationship between RDF data described with
OWL and the underlying Description Logics which underpin OWL, along with basic
notions of how DL concept induction for classification and subgroup discovery can
be performed with refinement-based search. We then highlighted the deficiencies
of learning under an open-world assumption and formalised a suitable setting for
learning under a closed-world setting which addresses these concerns. From here,
the contributions of this thesis will focus on how the closed-world learning setting
can be leveraged to deliver performant DL learning in systems which employ refine-

ment operators especially for classification and subgroup discovery.



Chapter 4

Concept Induction by Refinement

Operators

In the previous chapter, we described both the prerequisites for concept induction
and various learning settings for learning over DL knowledge bases, particularly
with high expressivity where the DL corresponds to OWL2-DL. Our goal is to be able
to apply such techniques to large DL knowledge bases to permit efficient learning to
support classification (machine learning) and subgroup discovery (data mining).
State-of-the-art learning systems such as DL-LEARNER [58] employ a refinement
procedure in learning which is not optimised for large knowledge bases. The refine-
ment operator used in this system was one of the first to be posed over the highly
expressive DL known as SROZQ(D) for describing OWL2-DL classes, and as such
was integrated into DL-LEARNER as a proof-of-concept. While certain optimisations
were identified and implemented in DL-LEARNER, we significantly improve on the
performance of the system through our understanding of concept induction under
a closed-world assumption and in the setting of learning from interpretations, as

presented in the last chapter. The main contributions made in this chapter are:

e Identification of the inefficiencies of the refinement operator used in the state-
of-the-art system DL-LEARNER for learning in SROZQ(D) knowledge bases

(§4.1);

o Introduction of a method that structures a closed-world interpretation to reveal
knowledge about the structure of the concept search space (§4.2);

e Definition of a modified refinement operator in terms of knowledge gained
from a structured closed-world interpretation which addresses the inefficien-
cies of the previously defined operator (§4.3).

49
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We begin with a discussion on the state-of-the-art refinement operator used in
the DL-LEARNER system and describe various limitations which we will address in
subsequent sections, before assembling a new refinement operator which addresses
these limitations. In the next chapter, we describe how the new refinement oper-
ator can be incorporated into supervised learning algorithms for classification and

subgroup discovery for efficient learning in SROZQ(D) knowledge-bases.

4.1 A Refinement Operator for OWL2-DL Classes

In this section we describe the downward refinement operator p used by the state-of-
the-art system DL-LEARNER which is used for concept induction for learning OWL2-
DL classes based on highly expressive DL SROZQ(D) [58]. This downward refine-
ment operator was developed from a careful analysis of the properties of refinement
operators for DLs [56] which recognised that while it is complete, it is also redun-
dant, and not proper. Nevertheless, it is used for effective concept induction in DL-
LEARNER and has been successfully applied to various concept learning problems.
The definition of the refinement operator p relies on several functions, such as sh
(shy) which traverses the subsumption hierarchy of concept names and role names

in 7 as follows:

shy(A) ={A'| A€ Nc, A C A—-3A" € Ncst. A'C A’ NA" C A}
shy(r) ={r'|r eNg ' Cr,=3r" € Ngst.r Cr'" AN Cr}

The functions for upward traversal of the subsumption hierarchy shy(A) and shy(r)
are defined similarly. The operator also relies on the functions ar(r) (ad(r)) which
map role names in Ny to atomic concept names in N¢ which cover all instances in the
range (domain) of a role 7, so as to restrict concept refinements in the range (domain)
of r to appropriate concept names.

The set of concepts which are available for refinement in the context of the range

of a quantified role expression is described as the set Mp as follows:

My ={A|AEN;,ANB# L, ANB#B,~3A st. A’ € Ncand AT A’} U
(~A|A€ N, ~ANB# 1, ~ANB#B,~3A st. A/ € Ncand A’ C A} U
{3Ir(T)|remgrg} U
{vr.(T)|r € mgrg}

where mgrg is the set of most general roles applicable to individuals in the domain
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of B defined as
mgrg = {r|r € Ng,ad(r)[M1B# L,—3' € Ngst.rCr' Aad(r')MB# L}

The refinement operator p; defined in terms of the context B, where B is the atomic

named concept describing the range of a role r, as follows:

%) ifC=_1

{C1U...UGCy|Ci e Mp(1 <i<mn} ifC=T

{A"| A" esh(A)} ifC=A (A€ Ne)
U{ANDID € py(T)}

{—A"| A" e shy(A)} if C=-A (A€ Ne)
U{~ANDID € py(T)}

{3rE|[A=ar(r),E€p, (D)} if C=3r.D
U {3r.(D) NEJE € py(T)}

0s(©)={ U {3s.(D)ls € sh (1)}
{Vr.E|[A=ar(r),E € p4(D)} if C=Vr.D

U {Vr.(D)MEIE € pg(T)}
U {Vs.D|s € sh(r)}
{C1M1...NC;1MDMNCip1M... MGy ifC=Cn...NncC, (n>2)
D € p5(Ci),1 <i<n}
{CiU...UC1UDUC1U...UCy| HfC=CU...UCy (n>2)
D € pg(Ci),1 <i<n}
U{(C1U...uCy)ID|D € pg(T)}

\

The downward refinement operator p is then defined in terms of p; as

0(C) = {{i} Up-(C) ifC= T
pT(C) OtherW1se.

Example demonstrates the application of p from T by illustrating a sequence
of single-step refinements of various subexpressions over concepts describing the

composition of chemical molecules.
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Example 4.1.1. Starting from the top concept T, the downward refinement operator p can
be applied in a number of ways to generate more complex concepts in a step-wise manner,

such as the following refinement chain describing chemical compounds:

T ~» Compound
~+ Compound M 3hasPart.( T
~» Compound M 3hasPart.( T
~~ Compound M ShasPart.(Ion) N YhasPart.(T)

(T)

(T)

(
~ Compound M JhasPart.(Ion) M VhasPart.(—Metal)

(

(

M VhasPart.(T)

~~ Compound M 3hasPart.(Ion M 3hasGroup.(T)) M YhasPart.(—~Metal )
~ Compound M FhasPart.(Ion M IhasGroup.(Carboxyl)) M YhasPart.(—Metal )

This example describes a single refinement chain amongst potentially very many in the space
of possible refinements to other expressions, and demonstrates how the refinement operator

can be applied in various ways within each expression.

Following on from Example we observe how the downward operator p may

refine to concepts which cannot describe any examples, as shown in Example

Example 4.1.2. Consider the following complex concept C describing chemical compounds
where:
1 2
—N— =
C = Compound M3hasPart.( Ion M 3hasGroup.(Carboxyl)) M VhasPart.(—Metal)

The concept C describes the set of chemical compounds with no part metal and at least one
part ion consisting of at least one carboxyl group. The downward operator p may permit

the following refinements of labelled subexpressions 1,2 which render C as unsatisfiable, as

follows:
No. | Refinement Observations
1. Compound ~~ ZnCly | Zinc chloride ZnCly has part metal (zinc), and neither ion
has part carboxyl group.
2. | lon~ IonMNH, | Ammonium NH, is a subclass of Ion, but has no carboxyl
groups.

In this example, refinements which were permissible to subexpressions of C in isolation
produced the expressions ZnCly M VhasPart.(—Metal) and NH, M 3hasGroup.(Carboxyl)
which are both unsatisfiable. These refinements were permitted on the basis of the axioms
captured in the TBox, such as the fact that ZnCl, T Compond and N HI C Ion.



84.1 A Refinement Operator for OWL2-DL Classes 53

Example [£.1.2] highlights an inefficiency with the operator p where refinements of
subexpressions of a concept can be generated in isolation to the rest of the expression.
In this way, refinements may be generated which are of potentially no value, such
as when they are unsatisfiable. Consider the case where we have a knowledge base
consisting of a large number of examples as assertions to the ABox, and where the
TBox contains many thousands of subclasses of Compound which have no carboxyl
groups, or have no part metal. In such a case, a learning algorithm which uses p to
generate refinements may evaluate very many ultimately unsatisfiable concepts over

the large number of examples, which may otherwise waste computational resources.

We may be tempted to address such inefficiency by relying on a DL reasoner to
determine if any concept generated by a refinement operator is suitable. For exam-
ple, if in Example the TBox contained the axioms ZnCl, T JhasPart.(Zn), Zn C
Metal, then the unsatisfiability in case (1) may be detected by incorporating the re-
fined expression C’ into the TBox as C' C T, and re-classifying to infer that, in fact,
T = C' C L. However, this is not a reasonable solution in the setting of concept
induction for learning, as re-classification of a TBox containing many complex ax-
ioms will take too long considering it must be performed repeatedly for each of the
many refinements produced in a generate-and-test based learning algorithm. Un-
less re-classification was possible in milliseconds or less, this approach would be
practically infeasible. Although incremental reasoning algorithms are designed for fast
re-classification when introducing new axioms, no such implementation currently
exists which can perform as efficiently as we require [20]. Furthermore, no such
algorithm exists for incremental classification relative to the closed-world interpre-
tation (Z,U) that we aim to employ for learning complex concepts as discussed in
Section of Chapter

Our approach to addressing this limitation is to analyse the closed-world inter-
pretation (Z,U), which must be pre-computed prior to applying a refinement oper-
ator such as p, relative to the concepts in the TBox which are used in refinement.
We aim to pre-compute a static set of axiomatic knowledge about the unsatisfiability
of concept subexpressions being refined, such that it will be possible to detect, at
the time of refinement, if a step may be unsatisfiable without resorting to further
reasoning or coverage checking. We will show how to redefine the behaviour of an
operator like p to incorporate such knowledge so that the refinements it produces are
still generated with rewrite rules which are largely syntactic, but are restricted based

on axiomatic knowledge to disallow certain refinements. The result is an operator
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that can quickly produce refinements that are used to traverse the space of concepts
more efficiently than p, and that is more suited for application to learning over large

knowledge bases.

4.2 Structuring the Interpretation for Learning

A closed-world interpretation such as (Z,U) describes how to interpret each of the
components of a DL language like SROZQ as subsets of individuals from AZH)
which is fixed and finite. For example, a named concept A € N is mapped to a set
AZU) C AZU) . This can be viewed as a global interpretation of the concept A, in
that it describes any and all individuals which are instances of A within the entire
knowledge base. This interpretation may avail knowledge such as A is disjoint from
concept B where AU 0 BZU) = @. A refinement operator such as p can leverage
such information so that it never produces the refinement chain A ~» A 1B when
AT B is known to be unsatisfiable. Similarly, this refinement chain may be avoided
if it is known that A © B where AZH) C BZH) a5 such a refinement would be
improper since AN B = A.

Consider the case where the interpretation of concepts A and B overlap, where
AZU) O BEU) £ @ as illustrated in Figure

. /

Figure 4.1: An example set of concepts A, B, C with two role tuples and where AT B
is satisfiable.

The concept A 1B is satisfiable because (A M B)ZH) is non-empty, so a refine-
ment operator may permit the refinement step A ~~ AT1B. However, consider
this refinement in the context of the filler concept of a role expression such as
Jr.A ~ Jr. (AN B). In this case, as there is no r-successor which is an instance
of A B, the expression 3r.(A M B) is unsatisfiable with respect to (Z,U). However,
the refinement step would have been permitted by p because A1 B is satisfiable with
respect to (Z,U).

For any knowledge base containing many concept and role names, the space
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of all possible concepts which can be composed with an expressive DL such as
SROIQ(D) can be vast. Learning algorithms which employ refinement operators
to search concept spaces are typically very computationally expensive, as not only
are many concepts generated, but computing their coverage for testing can also be
expensive if the knowledge base contains a large amount of data. We are therefore
motivated to reduce the number of concept expressions generated by a refinement
operator which are unsuitable, such as concepts which are unsatisfiable, or refine-
ment steps which are improper and produce equivalent concepts which unnecessar-
ily inflate the search space.

To achieve this, we aim to utilise the distribution of known data amongst cer-
tain concepts in the knowledge base computable as the closed-world interpretation
(Z,U) to guide refinement away from unsuitable candidates. Primarily, we aim to
determine when certain refinement steps would otherwise lead to an unsatisfiable or
equivalent expression, so as to prune these from the overall search space of concepts.
As refinement operates over any part of a candidate expression, we need to formally

define these as the subexpressions of concepts as follows.

Definition 4.2.1. (Concept Subexpressions) All subexpressions of a concept expression C

are defined inductively with function sub(C) which maps concepts to sets where:

{D ‘ VClgign :D e sub(Ci)} sz =CiMn...Nnc,
sub(C) = {C} U {D | VCi<j<y : D € sub(C))} ifC=CiU...UC,
{E | E € sub(D)} ifC=<r.D
for any role quantifier ©. A subexpression C’' of concept C is any C' € sub(C).

Example 4.2.2. Consider the following concept expression S along with various numbered

subexpressions:
3 4
S=3r(AMNB)M <3p.(é\l_|/_13)
1 2

In the derivation of SIZU)  the interpretation (A T B)(I'”) is used twice, once each in the
contexts of subexpression (1) and (2). If (AT B)TH) £ @, then a refinement operator
such as pg must have produced this expression because subexpressions (1) and (2) may also
be satisfiable. However, consider the case similar to that shown in Figure where no
r-successor is an instance of AT B. In this case, subexpression (3) is unsatisfiable, as is S.

Alternatively, consider the case where there are no individuals with at most three p-successors
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in AT B, which would make subexpression (4) unsatisfiable, and S also. In both of these cases,
refining to the subexpression AT1B of (1), (2) would have produced an unsatisfiable expression
overall, however without knowing that either role expression would be unsatisfiable with the
filler concept A M B, a refinement operator such as pg would generate subexpressions (1) and
(2) on the basis that it is satisfiable under (Z,U).

For any knowledge base, we aim to derive information about the distribution of
individuals, literals and role tuples of (Z,U) to identify when, for example, refine-
ment to the expression A ' B should be avoided because it is either unsatisfiable or
improper as some subexpression of another concept expression. This information
will then be used in the definition of a new refinement operator similar to p; to
control whether or not it chooses particular refinements to explicitly avoid generat-
ing concepts which do not progress a search towards solutions and otherwise waste

valuable computational resources.

In order to achieve this, we aim to develop a method of pre-computing the set
of individuals or literals which reside in the closed-world interpretation of subexpres-
sions of concepts encountered in a learning as search problem. This will provide us
with the means by which to identify expressions which can be safely pruned from
a search. We begin with a method for identifying particular subexpressions of a DL
concept expression, delineated by subexpressions which are the fillers of role expres-

sions, which we refer to as role subexpression contexts.

Definition 4.2.3. (Role Subexpression Context) A role subexpression context, also now
referred to simply as a context, identifies a subexpression C, of a tree-structured DL con-
cept C by decomposition into a finite list of concept fragments A of length n > 1 concept
expressions [Cy, ..., Cy] where each C; for 1 <i < n — 1 takes the form of:

e A quantified role expression <r.(o;); or
e A quantified role expression in a conjunction D1 ... Dy M1Or.(0;); or

e A quantified role expression in a disjunction Dy U ... U Dy U Or.(o;)

for k > 1, any quantifier &, role name r € Ng and subexpression symbol o;. To reconstruct
C from A, we replace each subexpression symbol o; in C; with Ciq fromi=n—1toi =1,

collapsing the list from right to left to produce C.

Example 4.2.4. Consider the following DL expression over concept names A, B,C,D and
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roles names r, s, d:

M
A2
D #2r.(3d.(double[> 5.1]) UB) M Vs.(AMC)
\ , \Y_/
A3 4

All role subexpression contexts for this expression are those labelled A; for 1 < i < 4 where:

A = [DnN #%r.(3d.(double[> 5.1]) LI B) MVs.(ANC)]

Ay = [Dn 22r.(o1) NVs.(ANC),3d.(double[> 5.1]) LI B]

Az = [DM 2%r.(o1) MVs.(ANC),3d.(op) U B, double[> 5.1]]
Ay = [D1 22r.(3d.(double[> 5.1]) U B) MVs.(o1), AN C]

Example illustrates how various subexpressions nested within roles of a
tree-structured SROZQ(D) concept expression can be referred to with a role subex-
pression context A. To reconstruct a concept expression C from a role subexpression
context A, we define functions to replace a subexpression identified with symbol o
with some other DL expression, and a nesting function which can collapse a list A to

the single expression C.

or.D if C = or.(0)

replo(C,D) =4 C;M...MC,MNOr.D ifC=CMN...MNC,MNOr.(o) (n>1)
CGU...UC,Uor.D ifC=CU...uC,UCr.(o) (n>1)

C if A =[C]
nest(A) = < nest([Cy,...,C!_,]) where ifA=[C...,Cy) (n>2)

Ch1 = repl,(Cu1,Ca)

We also define the set of individuals or literals that may occur as instances of
the innermost subexpression C, referred to by A = [Cy,...,C,] for n > 1 as a local

domain.

Definition 4.2.5. (Local Domain) A local domain A is the set of all individuals (literals)
which may occur in the closed-world interpretation (Z,U) of the subexpression C, denoted

by the role subexpression context A = [Cy,...,Cy| for n > 1as Ay = S, where S for
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1 < k < n is defined inductively as follows:

e ifk=1
16y € r®0 i e (G )0 NSy Aje ()TN} if2<k<n
where C; = nest([Cy, ..., Cy]), and where
or.(Cy) if Ce—1 = Or.(0k-1)
Ciy = Or.(C)) ifCry=D1U...UDy UOr.(op 1)
DiM...MDyMOr(CL) i Coq = DyM...M Dy MOr.(0f_1)

S =

where m > 1.

Example 4.2.6. Consider again the role subexpression contexts labelled A; for 1 < i < 4 of
the following concept expression from Example |4.2.4}

M
A2
D1 >2r.(3d.(double[> 5.1]) LU B) N Vs.(AT1C)
—n A

We then have the following descriptions of the local domains:
o Ay, : All instances in the set (D M =2r.(3d.(double[> 5.1]) UB) MVs.(ANC))ZH),
o Ay,: All r-successors which are instances of 3d.(double[> 5.1]) U B where there are at
least two per instance of D M Vs.(AT1C).
o A),: All d-successors which are double valued literals greater than or equal to 5.1 where
there is at least one per instance of A),.
o Ay,: All s-successors of instances of D I 22r.(3d.(double[> 5.1]) LI B) where every

s-successor is an instance of A1 C.

Intuitively, each local domain A, represents the set of individuals or literals which
can lie in the closed-world interpretation of the subexpression C, referred to by A =
[C1,...,Cyl], and is always a subset of the global closed-world domain where A, C
AZH) Relative to each local domain A, in context A, the subsumption relationships

between concept expressions may be different.

Example 4.2.7. Consider the concepts A, B where BTH) C AU, or when they overlap
such that AZZU) 0 BZU) # @, with both cases illustrated in Figure
Consider the contexts A; for 1 < i < 9 and their associated local domains A), each

of which contain one or more instances of AZH) U BEHU). The sets which represent the
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- ™ N \ I
AU /A -~ \/m ) B
A::> Wiill A% Wlill
N / N a

. : Y N

Ay, \ [, \

Figure 4.2: Two subsumption relationships between concepts A, B, the left where
BEZU) C AZHU) and the right where AZH) and BITH) overlap. This represents the
two cases where the concept A B is satisfiable as AZH) N BZH!) £ @. For each of
these two cases, intersection with various possible local domains A), for 1 <i <9 are
shown.

intersection Ay, N (A U B)Z4) are illustrated as the nine possibilities numbered in Fig-
ure where we denote the intersection of either AZH) or BLU) with the local domain as
A&I’u) = ATU A A) and BRI’M) = BEU N A,. Depending on the subsumption relation-
ship between ATH) and BEM), we summarise whether the concept A M B is equivalent to A

or B relative to each local domain A, as follows.

ifor A; and A), | Relationship Equivalences in context A; relative to A),
1,7 B AT AMB=B

2,6 B — AT ANB=Aand AT1B =B

8 B 5 A4 ANB=A

3,4,9 AT B —p | AnB= 1

5 AT BT L | AMB# Aand ANB # B

The set of instances covered by the subexpression A B in the context of each A; may be
different depending on the individuals in the local domain A),, and only in the case of Ay, is
the expression A I B not equivalent to one of: A, B, or L. Therefore, we would expect that in
applying a refinement operator to specialise either subexpression A or B in context As, that
AT B should be permitted because it is not equivalent to A, B or L, whereas in all other
cases, at least one of these equivalences occur. Where A = AT1B or B = AT1B holds, such
a specialisation would be improper, and where AT B = L holds, such a specialisation may

result in an unsatisfiable expression.

The interpretation of subsumption relationships as shown in Example be-

tween two concepts A, B which share instances with a local domain A, gives rise to
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the notion of context-specific interpretations relative to the closed-world interpretation

(Z,U) for some context A, as we will now describe in the next section.

4.2.1  Context-Specific Interpretations

A context-specific interpretation is an interpretation of some concept expression rel-
ative to a context A and local domain A,. The motivation behind defining such
an interpretation is to provide a means to reveal the subsumption relationships be-
tween concepts relative to a local domain, which as we have demonstrated in the last
section may be different to the relationships implied under the closed-world inter-
pretation (Z,U). We intend to utilise such concept subsumption information in the
definition of a refinement operator which modifies concept subexpressions, so that
it can recognise when to avoid generating certain refinement steps which result in

producing concepts which are not useful to the search.

Definition 4.2.8. (Context-Specific Interpretation) Given a closed-world interpretation
(Z,U), a context-specific interpretation J), is defined as the tuple Ty = (72, Ay, ..., Ay,)
for subexpression contexts A; for 1 < j < k where each A A is a local domain for context Aj,
and where -7 is a function which maps atomic concepts A relative to any context A to subsets

of Ay, and roles r relative to any context A to subsets of Ay x AZY) as follows:

AT = ATU) A Ay
ro={(i,j) | (i,j) € rPW st i € Ay}

The interpretation of complex concepts by J) relative to any context A is defined similarly to
the IC-interpretation as per Definition as follows, where

T = Ay

1N = @
(FO)7 = M\ Ch
(CND)y = CcHnDh

(CUD)? = ChuDN
(i} = {i|ieA)}
(Fr.C) = {i|ie Ayst Fj(i,j) erdrnje CEUY
O = {ili€Ayst Vjli,j)erfr —je CcTH)
(Z"r.C) = {ilieAyst #{j.(i,j) erlrnjeCcE
O = {ilieAyst 4{j.li,j) erlrnjeCT

}
L{)}
u)}
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This context-specific interpretation is defined in such a way that, for any concept C, it will be
the case that CT» C CZM) g5 CIn is the (T,U) interpretation of C relative to a local domain

Ay in subexpression context A, and where each Ay C AZH) for any context A.

A context-specific interpretation J, relative to some context A has some interest-
ing properties which make it useful for inducing concepts with refinement operators.
Most importantly, the set of inclusions C C D relative to a local domain Ay modelled
by J) denoted C C 7, D may be tighter than those axioms implied by a TBox 7 for
the whole knowledge-base K as illustrated in Example We therefore associate

each context A with a number of inclusions which we denote local axioms, as follows.

Definition 4.2.9. (Local Axioms) Given two concepts C, D relative to a subexpression
context A and a closed-world interpretation J), local axioms denoted T) are the set of all
axioms of the form:

e Equivalence: C =7, D where C* = DI

e Strict subsumption: C Cg, D where C/* C D%

e Disjointness: CM1D C 7, L where C/» N D% =@

Example 4.2.10. Consider concepts A, B in a knowledge base K = (T, A) where B C
A € T, and where A # @ and K is consistent. Therefore, all interpretations T which
are models of K have B C AL. Consider the closed-world interpretation (Z,U) which
models BEH) C AU over K, and a context-specific interpretation J) relative to some
local domain A). Under [J), it is possible that any of the following may hold:

e 7T, = B = A where A7 = B

e 7o =BMAC L where B/» =@ (Bis unsatisfiable in local domain A))

e 7, |= B C A where B/» N AJr = B
Note while each of these interpretations are consistent with BZHM) C AZU) | the first case
recognises that, in the context of A, a refinement chain A ~+ B is improper. Similarly, the
second case where B =7, L can be used to avoid expressions containing B in the context of

A if it will result in the production of an unsatisfiable concept.

Proposition 4.2.11. For all inclusion axioms ¢ in the set of local axioms T, by Defini-
tion for some context A, if T |= ¢ then T, |= ¢ for the TBox T which models inclusion

axioms ¢ relative to the closed-world interpretation (Z,U).

Proof. We prove Proposition for each form of local axiom ¢ € 7, over any two
concepts C, D which can be interpreted by (Z, /) and J) by noting that each context-
specific interpretation C7* and D7t are subsets of CZ#) and DZH) respectively as
CHh = CTU N A, and DIr = DEIM) N A,
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e For ¢ = (C C D), we must show that the implication CZ#) ¢ DEH) — Ch ¢
D7 always holds for any subexpression context A. The implication fails only
if the antecedent CZH) < DTH) holds and the consequent C/* C DY+ does
not. As CY is always a subset of CZ4) where C7* = CZH) 0 A, it must be
the case that C/* ¢ DZH) In the case where C7* = @, the consequent holds
trivially. Now consider there exists an individual i € C9x, and therefore we
also know that i € DZH), The consequent fails when it can be shown that
i ¢ D, If we assume i ¢ DY, then it must be the case that i ¢ DZH), which
is a contradiction. Therefore, it must be the case that i € D7* which means
C7» C DY also holds for any individual i.

e For ¢ = (C = D), we must show that CZ¥) = DEU) — CIv = DI for
any subexpression context A. This holds trivially as C7* and D7* are the same
subset in the intersection CZ4) N A, and DZH) N A,.

e For ¢ = (CMD C 1), we must show that CZ*) N DI = @ — CIH N DI =
@. This also holds trivially as there are no common subsets of CZ#) and DZH)
which are not disjoint.

Therefore, we conclude that for any local axiom ¢ in 7} it is the case that if 7 |= ¢
then 7, = ¢ for any context A. O

Example and Proposition demonstrate that any inclusion axioms
C C D € T where CZU) C DITH) are not contradicted under J, relative to a context
A as it is always the case that CIr C D, even if it can be shown that under J,
that C =57 D or CND Ty L hold, yet this cannot be shown under (Z,U). While
relationships such as C C D are typically inferred with logical reasoning algorithms
under the open-world assumption relative to the standard first-order interpretation
Z, they can be computed explicitly over a fixed model such as (Z,/) under the
closed-world assumption for any two concepts by testing the relationship between
sets CZU) and DH) composed of asserted data, and similarly, under 7, between
C7+ and DY for any subexpression context A.

Unfortunately, for any knowledge base consisting of many concept terms, role
terms and individuals, it would be practically infeasible to enumerate all possible
concepts expressible in a concept language like SROZ Q(D), along with their subex-
pression contexts A, in order to pre-compute J, in its entirety, unlike (Z,). Fur-
thermore, even if it is possible to enumerate each concept and subexpression context,
the computation of each local domain A, and the context-specific interpretation of

all concept terms is again likely to be infeasible especially given a large data set of
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individuals and literals.

Recall that our aim is to define and construct a context-specific interpretation to
provide a refinement operator with information about which concepts to prune when
performing refinements of concept subexpressions which do not aid in the search.
With this aim in mind, we intend to describe how to construct a particular finite fixed
context-specific interpretation 7, based on (Z, /) which is small enough to compute
reasonably quickly, but which may still be used to permit a refinement operator to
take advantage of knowledge which 7, affords relative to a limited set of contexts.
Specifically, the contexts we will describe consist exclusively of single role expres-
sions in conjunction with simple concepts including T, atomic concept names and
negated atomic concept names. At the very least, such contexts will subsume more
complex subexpressions composed of such fragments, and can be used to identify
certain cases where refinements would lead to concepts which can clearly be avoided.
As we will describe in the next section, such a limited interpretation still affords new
knowledge which can be effectively leveraged by a refinement operator to reduce
the search space of concepts. We will begin by describing a method for construct-
ing such a limited context-specific interpretation, and then describe how it can be
incorporated directly into the definition of a new pair of downward and upward
refinement operators p; and v; which are defined in terms of a set of applicable

contexts A.

4.2.2 The Context Graph

A context graph is a data structure which roughly captures a context-specific interpre-
tation J) for some knowledge base K based on its closed-world interpretation (Z, U ).
The context graph represents a restricted and finite collection of contexts A and asso-
ciates with each a set of information about certain concepts which are satisfiable in
the context. In doing so, the context graph reveals local axiomatic information about
the distribution of (Z,U) relative to a finite number of particular concept expressions

and their subexpressions.

Definition 4.2.12. (Context Graph) A context graph & is a graph structure & = (V,E)
resembling a set of trees where:

e V is the set of vertices V.= {A1,..., Ay} where each vertex label A; for 1 < i < m

is a role subexpression context. Each vertex V with label A is associated with a set A,

which captures all individuals (literals) which comprise a local domain for A;.
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o E is the set of directed edges E = {(A1,A]),..., (A, A,)} where each edge label
(Ai,AL) for 1 < i < n represents the edge from vertex with label A; to Al where
Ai=[Cy,...,Cl fork > 1and A, = [Cy,...,Ce T Or.(0), Crsa] for some v € N,
concept expression Cyy1 and role quantifier &. Each edge (A;, A}) is associated with the
set (Or.(Cry1)) 7% to capture the context-specific interpretation of the role expression

in context A;.

A context graph & is defined over contexts A = [Cy,...,C,] where any C; for
1 <i < nis composed exclusively of atomic and negated atomic concept symbols

a={T,L}U{A,—-A, | A € Nc} or role expressions as follows:

c {ANOr.(o) | A€a,r e Ng,©e{3,V,=" "} if1<i<n-—1
i €
1

o ifi=n

In this way, the context graph is restricted to capture a limited set of possible
subexpression contexts A. As discussed in Section this restriction enables the
graph to be computable in practice, as computing the graph for all possible concepts
and their subexpressions is infeasible. However, as we will later show, the context
graph can be used to provide useful information such as local axioms about a broader

space of concepts that are available to a refinement operator.

[T]
[T M 3r.(o1), T] [T M 3r.(o1), B] [T M 3t.(o1), C]
[T M 3r.(o1), (T3 (ol) [T M 3t(o1),
T M 3s.(02), T] TN 225.(03), A] —~CMVu.(o3), T]

Figure 4.3: An example context graph structure showing vertex labels only (see Defi-
nition[4.2.12). A context graph represents a collection of directed trees which capture
the set of role subexpression contexts which are permissible for any context A by
conjunction with an atomic or atomic negated concept and quantified role expres-
sions. The context graph is designed for use in concept refinement as it indicates to
a refinement operator which concepts in some subexpression context A are available
for refinement as the set of immediate child nodes in the graph. While only a single
tree structure is shown here, there may be several in the entire context graph rooted
at different contexts for each named concept A € N in the form of A = [A] or
A = [-A].
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A context graph can be computed by way of a procedure known as an instance
chase. Before we describe the algorithm for performing an instance chase, we define
several terms which will aid in its explanation. The instance chase begins with a
set of labelled examples £ with labels (2 where £ = Jy,eq £ for learning where
&€ C Ny, and constructs instance chains given the closed-world interpretation of every

role r € Ng.

Definition 4.2.13. (Instance Chain) Given a knowledge base K, a set of named individ-
uals Nj, datatype literals Np, role names Ng and a closed-world interpretation (Z,U), an

instance chain ic is a sequence of n tuples of the form
ic = [(a0, a1), (a1, 02), ..., (An—2, An-1), (An-1,an)]

where a;,a;41 € Ny for 1 < i < n—1, and where a, € Ny or a, € Np, and each tuple
(a;,a;) € r T for any role r € Ng. An instance chain is acyclic if, for any aj of any tuple
(aj,a;) in ic, aj does not also appear in any tuple (a;,ai) in ic. We say that an individual
or literal a; is reachable from individual a; if there exists any instance chain which starts
with tuple (a;, a;1) and ends with tuple (a;_q,a;)). We say that any a; is contained in an

instance chain ic if it appears in any tuple (a;, a;) or (aj, a;) in ic.

The construction of a context graph & is performed by expanding so-called r-

successors for every role r € Ny starting from the examples ¢ € £.

Definition 4.2.14. (Role r-Successors, Predecessor) Given a role r € Ng, predeces-
sor individual i € Ny and the interpretation (Z,U), the set of r-successors of i is the set
succ(i,r) = {j | (i,j) € rZH},

When expanding r-successors for every individual encountered within an in-
stance chain, we analyse the set of concepts which describe each individual to con-
struct subexpression contexts A which form the vertices of the context graph. In this
way, the context graph is comprised exclusively of concepts and roles which describe
only those individuals and literals which are reachable via instance chains from the
examples via role assertions in A. As we aim to use the context graph to guide a re-
finement operator in the search for concept expressions, excluding irrelevant concept
and role names effectively reduces the concept search space.

To understand how the context graph can aid in determining possible refine-

ments, consider the concept expression 3r.(T ). There are several ways to downward-
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refine this concept, including;:

Ir.(T) ~ Ir(T)MNC (conjunction with a concept)
Ir.(T) ~ Ir.(C) (refinement of the filler T ~» C)
Jr.(T) ~ 22r.(T) (refinement of the quantifier)

In order to determine the set of concepts which can be used in conjunction with
3r.(T), we can compute the set of concepts which describe predecessors of r-successors,
or instances of 3r.(T). For example, consider the individual i where i € (3r.(T))Z4),

The set of simple concepts describing i can be computed as sc({i}) as follows:

sc(S) ={C|VieS,Ceatom(i)}
atom(i) = atom (i) Uatom- (i) (all simple concepts describing i)
atom, (i) ={A| A& Ncs.t ic AT} (all concept names)

atom- (i) ={-A| A€ Ncst A¢atom, (i)} (all negated concept names)

All concepts C € sc({i}) are those which may appear as 3r.(T) M C such that C is
satisfiable with respect to (Z, ). Similarly, we can generate the set of all simple con-
cepts which the filler T may be downward refined to in 3r.(T) by computing the set
sc(succ(i,r)) for all r-successors of i, where for all C € sc(succ(i,r)) we will find that
3r.(C) is also satisfiable under (Z,U), at least relative to the predecessor individual
i. Note that this set may be different for other predecessor individuals. The context
graph will reflect these differences by capturing satisfiable concept subexpressions as
its vertices which were computed from individuals found along instance chains via

r-successors.

Role quantifiers ¢ for which concepts of the form <©r.(D) are satisfiable for
various simple concepts D can be computed by analysing the set of r-successors
S = succ(i,r) for some predecessor individual i, along with the set of concepts for
which each successor j € S are instances as sc(S). Pairs (D, n) which capture when
there are exactly n r-successors which are instances of D from i can be computed by

the role filler function 7f(S) as follows:
rf(S) ={(D,n) | VD € sc(S),n =|SN DT An>1}

The pairs (D, n) in rf(S) simply reflect that exactly n individuals in S are instances
of D. If S was computed as the set of r-successors from i, then rf(S) can be used

to compute all satisfiable concepts of the form <©r.(D) for various role quantifiers
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& € {3,V, 2™, S} as follows:

3:If (D, n) € rf(S), then 3r.(D) is satisfiable wrt. (Z,U);

V: If (D, n) € rf(S) where n = |S|, then Vr.(D) is satisfiable wrt. (Z,U);
>m: 1f (D,n) € rf(S), then "r.(D) for 1 < m < n is satisfiable wrt. (Z,U);
sm: 1f (D,n) € rf(S), then S"r.(D) for m > n is satisfiable wrt. (Z,U).

Recall that the vertices of the context graph are the subexpression contexts A re-
flecting various concept expressions and their subexpressions which are satisfiable
under (Z,U). These expressions are restricted in form, such as [C 1 <r.(o), D] which,
when collapsed into an expression nest(A) = CM<r.(D), where C, D are simple
concepts. In starting from the set of examples £, we begin construction of the con-
text graph by computing sc(&) to give an initial set of vertices. For example, assume
sc(€) = {T,C}. Then, the context graph will consist of two vertices, namely A1 = [T]
and A, = [C]. Then, from each example e € £, we compute all r-successors S for each
role name r € N and the set of simple concepts 7f(S) for which they are instances.
If say, example ¢y € £ is an instance of T and C, and it has exactly one r-successor
which is an instance of D and T, we would expect to see a partial context graph as

shown in Figure

/ ~ PN

[T M 3r.( [T M3r.(oq),D] [CM3r.(o1), T] [CM3r.(o1),D]

Figure 4.4: A partial context graph under construction for role r from a set of examples.

To construct the various vertices and edges of the context graph, instance chains
are computed along r-successors for every subexpression corresponding to a vertex
until there are either no more r-successors to expand, or a cycle is detected in the
instance chain. Specifically, the set of all contexts generating new vertices from an
individual i along role r with successor set S = succ(i,r) is computed with the

function con(i,r,S) as follows:

con(i,r,S) = cons(i,r,S)Ucony(i,r,S)Ucons(i,r,S)Ucon<(i,r,S)
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where

conz(i,r,S) = {[CM3r.(o1),D]|VC € sc(i),
VD € {D |V¥(D,n) € rf(S) s.t. n > 0}}
cony(i,r,S) = {[CM3r.(o1),D] | VC € sc(i),
VD € {D | VY(D,n) € rf(S) st. n=|S|}}
con>(i,r,S) = conz(i,r,S) U
{[CT1 Zr.(01),A] | VC € ic, Vg where 2 < g < ||,
VAe {A|V(An)erf(S)st.n>q}}
con<(i,r,S) = cony(i,r,S) U
{[CM Sr.(01), A] | VC € ic, Vg where 1 < g < succyax(C,7) — 1,
VA e {A|V(An)erf(S)st q>|S|}}

where succyay(C,7) = max{n | Vi € C/ s.t. n = |succ(i,r)|} is the maximum car-
dinality of r-successor sets for any instance i of C/*. However, if at the point of
computing con<(i,r,S) the set C/* is unknown for any context A, the broader in-
terpretation C\Z¥) may be used until C7* is computed and elements of con<(i,r,S)
may be pruned, see Section for more details. Note that we produce contexts
for 29r.(D) for g > 2 because Z!r.(D) = Jr.(D), and S7r.(D) for q > 1 because
<%.(D) = —3r.(D) = Vr.(—D), and so are already represented by all cases in the sets

cons(i,r,S) and cony(i,r,S).

Depending on the desired expressivity of the concept language, we may omit any
set cone (i,1,S) for role quantifier & € {V, >, <} from the definition of con(i,r, S), but

will at least ensure that it contains cons(i,7, S) as a minimum.

Figure 4.5: An example set of concepts and their subsumption relationships with a
single individual i with three r-successors.

Example 4.2.15. Consider the concept names Nc = {A,B,C} with their subsumption
relationships as depicted in Figure 4.5\ along with the predecessor individual i with three r-

successors S = succ(i,r) as illustrated. In analysing the these r-successors of i, we find the
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following:
S| =3
sc({i}) ={A}u{-B,~C}
sc(S) ={B,C,—A,—-C}
rf(S) ={(B,3),(C,2),(=4,3),(=C, 1)}

The set of applicable contexts defined by cone (i, r,S) for & € {3,V,>, <} are as follows:

cons(i,r,S) = {[AM3r.(o1),B],[AMNIr.(oq1),C|,[AMNTr.(o1),-A],
[AM3r.(oq),~C],[-BM 3r.(o1),B], [-BM3r.(c1),C],
[-B M 3r.(o1),nA], [-BM3r.(o1),~C],[~CM 3Ir.(o1), B],
[-C M 3r.(o1),C], [-CM3r.(o1),~A], [-CM3Ir.(o1), ~C]}
cony(i,r,S) = {[AMVr.(o1),B],[ANVr.(o1),—A], [-BMVr.(o1),B],
[-BMVr.(o1),nA], [-CMVr.(o1),B], [~CMVr.(o7), ~A]}
cons(i,r,S) = {[AT Z%r.(o1),B],[AN Z2r.(01),C],[AT Z2r.(01), 4],
[~BT1 #2r.(01),B],[-B 1 #2r.(01),C], [~BT1 #2r.(01), = A],
[=C M Z2r.(e1), B], [2C 11 Z2r 01) Cl, [~C M #2r.(o1),~4],
[
[
[
[
[
[
[
[
[

’\\_/

\_//'\

A Z3r.(o1),B],[AT #3r.(01), = A],[~BT Z3r.(01), B],
=BT #3r.(o1),~A],[~C 1M Z3r.(01), B], [-C 1 Z3r.(01), ~A]}
con<(i,r,S) = {[AM S?r.(o1),A],[AN S%r.(01),C],[AT S21.(01), —B],

AN S2r.(01),~C],[~BT S2r.(01), A], [=B M S2r.(01),C],
=BT 2r.(o1),—B], [=B M S2r.(01),~C],[~C 1 S%r.(01), A],
=C M S2r.(01),C], [=CM S2r.(01),—B], [-C M S%r.(01),~C],
AN Slr(oy), Al [AT Sir.(o1),—B], [AT Str.(o7),=C],

=BT Slr.(o1), A], [-B 1 Str.(o1),=B], [-B M Slr.(o1),=C],
=C 1 Slr.(o1), A], [-C 1 S1r.(01), =B], [~C 1 Slr.(o1), =C]}

Any concept E = nest(\) where A € con(i,r,S) will always be satisfiable with respect to

(Z,U) because each A was constructed over the role successors of some individual i to ensure,

at the very least, that i € E (ZHU),

Example demonstrates how the analysis of a single set S of r-successors for

any individual i and role r can be used as the basis for determining the set of contexts

cone which can be used to construct new vertices of a context graph. As instance

chains are computed to new individuals such as i from any vertex, con¢ gives rise

to new vertices which describe satisfiable subexpressions. These new vertices are

then connected to their predecessors with edges, which are in turn attributed with
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the set of role tuples encountered by expanding r-successors. Algorithm [4] is an
instance chase procedure for constructing a context graph in this way, which begins
by expanding r-successors to construct instance chains to every individual and literal
reachable from every example in £. Each individual reached in the chase is analysed
with respect to each role name r € Ny to construct a new set of role subexpression

contexts A which comprise the vertices of the context graph.

Algorithm 4 Instance chase procedure for computing context graph & for a limited
number of restricted contexts A.

1: = (V,E) where V=0, E=0 > Initialise an empty context graph
22 Q:={(e[],e) | Ve &} > Example e with preceding instance chain ic = ]
3: L:=0 p Containing tuples (A, i,e) to record i as reachable from e in context A
4: while Q # @ do
5: (i,ic,e) € Q > Select an arbitrary tuple, then...
6: =Q\ {(,ic,e)} > ..remove it from Q
7: if iy = @ then > i) holds all preceding contexts for i
8: i ={[A] | A esc(i)}
9: end if
10: succ; =@ > All successors of i for any role
11: for all r € Ni do
12: S=1{j| (ij) er@¥y > All r-successors of i
13: succ; = succ; US
14: for all [C; M Or.(01),Cy] € con(i,r,S) do
15: for all A € iy where A = [D4,...,D,] and D,, = C; do >(n>1)
16: A= [Dl,...,DnHQY.(On),Cz]
17: V=VU{A AN} > Add graph vertices
18: E:=EU{(AA)} > Add graph edge
19: (Ay = AU}
20: L:=LU{(Aje)} > Label j as reachable from example e in A
21 forall j € S where j € C{**) do
22: Ay :=AyU {]}
23 ja=jrU{A'} > j) holds all preceding contexts for j
24: end for
25: end for
26: end for
27: end for
28: for all j € succ; where j not contained in ic do > Prevent cycles
29: ic == ic||[{i,1))] > Update instance chain with new role successor j
30: Q:=QU{(jic,e)} > Add new tuple to chase from j
31: end for

32: end while

The instance chase Algorithm |4| will always terminate as it enumerates all acyclic

instance chains from the finite set of example instances £ over (Z,U). After construc-
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tion of the context graph & over a knowledge base K for a set of examples &, there
will be #n contexts Ay where 1 < k < n.

Initially, the context graph is potentially large for knowledge bases with many
concept and role names which describe the individual and literal data reachable from
examples in (Z,U). As the purpose of the context graph is to enable a refinement
operator to select appropriate refinements of concept expressions in any subexpres-
sion context, we can make several observations about how it will be used, and how
it can be limited in size. After construction by the chase Algorithm |4, the context
graph will contain a set of vertices corresponding to subexpression contexts A and
with each, a local domain A, capturing all individuals or literals known to reside in
each context. Given each local domain consisting of individuals, we can compute the
set of local equivalence, subsumption and disjointness axioms 7, between pairs of
simple atomic and negated atomic concept names.

A refinement operator may utilise the axioms of 7, generated by analysing each
local domain A, for each context A to ensure that refinements avoid expressions
which are clearly unsatisfiable, or steps which are clearly improper or redundant.
For example, concept equivalence, subsumption and disjointness between concepts
C,D can be utilised to ensure that a conjunction C 1 D is never produced in the
context of A. After the analysis of each A, in the context graph, we identify the
groups of concepts which are found to be equivalent, and construct so-called local

equivalence groups as follows.

Definition 4.2.16. (Local Equivalence Group) A local equivalence group relative to a

context A is a set of equivalent concepts {Cy,...,Cy | C; = CeTh(1<i<j< k)}.

For any local equivalence group G of any 7,, we identify a single concept name
C € G to represent all concepts in G for the purposes of refinement, as permitting
refinement to concepts from G \ {C} would produce redundant refinement chains,
such as where G = {A, B} and the two chains C ~» CM A and C ~» CT1B where
A = B in the subexpression context A. In order to select an appropriate concept,
we may rely on user defined preference, or simply choose the most general concept
of G relative to the TBox 7 as our intention is to use the refinement operator for
generating concepts as hypotheses, and aim to ensure hypotheses generalise well
over unseen data, which is discussed in more detail in Chapter

Generally, any concept expression interpreted relative to a context A is considered

locally minimal if it is not equivalent under J), to some other concept as follows.
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Definition 4.2.17. (Locally Minimal Concept Expression) A concept expression C is lo-
cally minimal in context A under interpretation Jy iff, for all subexpressions S € subex(C)
where S = S1M...1M S, 0or S = Sy U...USy,, that removing any subexpression S; where
1 <i < n resulting in concept C' we find that C # 4, C'.

4.2.3 Pruning the Context Graph

The local axioms 7, for each context A give rise to ways of pruning the context graph
to exclude irrelevant portions. To explain how, consider the following fragment of a

context graph:

M=, Al
A=[.,AN3r(),T] As=[..,ANIr(0),B] As=][..,AN3r.(o),~A]

In this case, all -successors of individuals in A% for Jr.(o) were instances of T,
B and —A. As no r-successor was an instance of A, we would find that T =7 —A in
each context Ay, A3 and A4. As we would otherwise opt for the more general concept
T over —A in refinement within these contexts, we may safely prune edge (A1, A4) in
preference over (A1, Az), and along with it the entire subtree rooted at vertex Ay4.

In general, consider any context graph & = (V,E) and any vertex A € V where
A = [...,C] with edge (A,A") € E where A = [...,CM<r.(o),D]. For any local
equivalence group eq over local axioms 7),, we may select a most general concept
M € eq and exclude all others from the context graph along any edge (A,A”) € E
where A" = [...,CM<r.(o),F| for F € eq\ {M} where M = F € T, such that
MJv = FIv. Pruning the vertex A" from the graph removes the edge (A, A") and
the subtree under A” from &. In doing so, we are eliminating portions of the context
graph which describe concepts which a refinement operator never ought to consider,
because if M =7, F for any concept F in context A”, then any concept composed with
F is equivalent to concepts where F has been replaced with M, otherwise permitting
redundant refinement steps. Furthermore, any concept containing F M M or F LI M
would not be locally minimal, also potentially a source of redundant or improper
refinement steps.

Recall that in the construction of contexts A = [..., "r.(0), C] which were com-
puted by con<(i,r,S) from some individual i and r-successors S, that the maximum

value for n was initially determined by the maximum size |S| for any i € N; across
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the entire knowledge-base. However, after the context graph has been computed, the
set of instances in each local domain A, permit us to compute tighter upper bounds
for n by inspecting the maximum size S for individuals in the local domain A, only.
Afterwards, we may find that if the maximum size of any set of r-successors which
are instances of C is m, then any vertex such as A = [..., S"r.(0),C] where n > m
may also be pruned from the context graph, along with the subtree rooted at any

pruned vertices.

4.2.4 Identifying Concept Subexpression Contexts

Computing the context-specific interpretation D4 of some arbitrary subexpression
D belonging to some expression C, we necessarily require the local domain A, of the
context A describing where D is situated within C. However, as we have seen in the
previous section, we do not propose to compute all possible contexts A representing
all possible subexpressions of C, as this is practically infeasible. Instead, we employ
a context graph to capture a subset of subexpression contexts, which may not be
associated with all local domains.

In this section, we describe how a precise subexpression context A which identi-
fies any subexpression D in C, along with the local domain A), can be approximated
over multiple contexts A4, ..., A, capturing simpler and more general concepts within
a context graph. To begin, we distinguish exact subexpression contexts from approx-

imate ones with an example.
Example 4.2.18. Consider the following concept expression:

M

C=AnNBMN3r(DU (vs.(w)))
A3

A2

In this expression, the following three exact role subexpression contexts apply:

A =[ANBN3Ir(DU(Vs.(EMF)))]
Ay =[ATIBM3r.(o1),DU(Vs.(EMF))]
)\3 :[A|_|B|_|E|1".(Ol),D|_|(VS.(Oz)),EHP]

As the exact contexts A1, A; and A3 from Example contain a disjunction (L),
they cannot be represented in a context graph because the vertices are restricted to

capturing subexpressions of the form [C, ..., ¢r.(o), D] for simple concepts C, D by
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Definition Therefore, the local domain A, associated with any vertex A in the
context graph will not match the local domain of A4, A; and A3. However, a context
graph may contain contexts representing subexpressions which are super-classes of
some arbitrary subexpression D. In this case, we may still derive useful information
about the local domain of D, along with any local axioms about the local domain. As
an example, consider a context graph & which contains the following vertices and

edges representing subexpression contexts A; for 4 < i < 14 as shown below:

Ay =[T]

As = [A]

A¢ = [B] N

A7 =[AN3r.(o1), T] !

Ag =[AM3r.(o1),D] / \ / \
Ay = [B 1 31’.(01), T] Az Ag )\10
Ao = [B M 31’.(01), D]

All = [Am37.<01),T|_|VS.(02),E] / \/\ A / \/\14
A =[AN3r.(o1), T NVs.(03), F] M 7w

)\13 [B 1 3r. (01) T VS.(OZ), E]

)\14 = [BI‘IEIr.(ol),TI_IVs.(oz),F]

Continuing on from Example consider again the concept C = AT BTl
Jr. (DU (Vs.(EMF))) and the context A; capturing this whole expression. From
the context graph & above, we find that the subexpression contexts A4, A5 and Ag
all represent subexpressions which are super-classes of C, as C T T, C C A, and
C C B. This also means that the local domain Ay, € A), where 4 < i < 6. In fact,
as each of these local domains contains only those individuals which are instances
of their respective subexpression concepts, we will find that Ay, € Ny<;<6 Ay, the
intersection of each domain, because C = AT BT1... or the intersection of these

subexpressions!.

As we will soon show, any local axioms which hold in any of
the contexts A4, A5 or Ag will apply to Ay, and therefore be applicable for use by a
refinement operator when modifying the concept in context A;.

Further continuing on from Example consider the context A, = [AM BT
3r.(o1), DU (Vs.(ET1F))] which refers to the subexpression D LI (Vs.(ETF)). There
are also a number of subexpression contexts in the context graph & above which

describe super-classes of this subexpression, namely A7y and Ao, as both these contexts

INote that AMB=ANBMNT.
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refer to the subexpression T, and each preceding subexpression is a superclass of C
where C C AM3r.(T) and C C B 3r.(T). Similarly, the context A3 = [ATM BT
3r.(o1), D U (Vs.(02)), E M F] which refers to the subexpression E I1F is a subclass of
the subexpressions referred to by A1y, A2, A3 and Ayy.

Generally, given any arbitrary subexpression D and role subexpression context
A, there may be multiple subexpression contexts A = {Aq,..., Ay} from a context
graph which, when considered together, approximate A. Formally, we denote the set
of such contexts A as applicable subexpression contexts relative to an exact context A for

some arbitrarily complex subexpression D.

Definition 4.2.19. (Applicable Subexpression Contexts) Any context \' = [Dj, ..., Dy,]
is applicable to describe a subexpression S of a concept C which is otherwise identified by
an exact context A = [Cq,...,Cy] iff C; C(zu) Difor 1 < i < n, defined as appl(C, A, S)
where:

appl(C,[D1],S) <~ C=SAS C(zy) D1
appl(Or.(C),[D1 M <Cr.(o1),Dy,...,Dy),S) <~ D1 =T A
appl(C, [Da, ..., Dyl,S) (forn > 2)
appl(C1M...MCy M Or.(C),[D1 M Or.(01), Dy, ..., Dyl, S) <
3Ci s.t. Ci C(z) Da Nappl(C,[Dy,...,Dyl,S) (for1 <i<m,m>1,n > 2)
appl(C1U...UCy, [D1 M Or.(01), D, ..., Dyl,S) < CrU...UCy Czuy D1 A
3C; s.t. appl(C;i, [Dy,...,Dy),S) (for 1 <i<m,m >2,n>2)

From a set of contexts V.= {A1,..., Ay} for n > 1, the set of contexts which are most

applicable to describe subexpression S of a concept C is the set A where:

A ={[Dy,...,Dy] |V[Dy,...,Dy] €V for n >1Aappl(C,A,S) A
—3[Dy,..., Dy € Vs.t. D} C(gy) Diforany 1 <i < n}

Intuitively, A is the set of contexts A which most tightly describe a subexpression context S.

While this method only generally provides us with an estimate of the exact role
subexpression context A for any concept expression interpreted by 7, it can still
be used to detect when subexpressions may be unsatisfiable or not locally minimal,
as we are motivated to detect. For example, once again consider the concept C =
AMBN3r(DU(Vs.(EMF))) where A = {A | VA € {Ayg,..., A1s} — appl(C,A,C)} =
{As,As}. With respect to these contexts, if we find that AMTB T L € T, or AT
B C L € 7,, then the subexpression A B is unsatisfiable with respect to its exact
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subexpression context A.

Proposition 4.2.20. For any subexpression S of a concept C and any applicable context A’
for S where appl(C, A, S), it is always the case that ¢ where Ty |= ¢ then Ty |= ¢ where

A is the exact subexpression context for S.

Proof. By Proposition we know that if 7 = ¢ holds over the domain AZ#)
for any axiom ¢ defined for local axioms in Definition then 7, = ¢ holds
over any local domain A, when Ay C AZH). Therefore, for Proposition to
hold, we need to show that Ay C A,/ always holds. For the exact context A =
[Dy,...,Dy] and any applicable context A’ = [Dj,...,D;,] for S, it must have been
the case that each D; C 7y D! for 1 < i < m by Definition Consider the
case where A’ = [D/] and A = [D4], and where both D] = T and D; = T. Then, as
D1 Cizu) D), we have A, C Aﬁ\ as required by the definition of T relative to each
local domain. Now consider the case where A’ = [Dj,...,D;,] and A = [Dy,..., Dy,]
for m > 2, where each D} = C/ 1 <r.(o) for 1 < i < m. We know that D; has the
form Or.(o) or C1M...CxM<r.(0), or C;U...CeUSr.(o) for k > 1 describing the
r-successors o which are instances of the concept nest([Dj41, ..., Dy]). Because A’ is
applicable, it must have been the case that nest([D;, ..., Dy]) C(zu) C!. Therefore,
the set of instances of C; with r-successors is a superset of the set of instances of
nest([D;, ..., Dy]) with r-successors for any role quantifier ¢. Therefore, the local
domain Ay,  for the context A;,; = [D},...,C;MOr.(o),nest([Di4, ..., Dy,])] for the
subexpression at level i + 1 will always be a superset of the local domain A, for
the exact context A; = [Dy, ..., D;,nest([Diy1, ..., Dm|)], which shows that Ay C Ay
always holds. O

Corollary 4.2.21. From the proof of Proposition we know that each context A in the
set of most applicable contexts A’ € A also each have A, C A'\. Therefore, the local domain of
the exact context A, must also be a subset of the intersection of the local domains for all most
applicable contexts A as Ay C Ay, N...NAy, forall A; € A for1 <i<n.

Proposition 4.2.22. Consider a subexpression S = CyM...MCy for n > 2 and pair C;, C;
for 1 < i < j < n with a set of applicable subexpression contexts A. If, for any context
A € A where \' = [D,...,D,,] for m > 1 where D,, = C; we have Ty = C;MC; E L
then S is unsatisfiable relative to J) where A is the exact role subexpression context of S.

Proof. From the proof of Proposition |4.2.20, we know that the local domain A’ sub-

sumes the local domain A, for the exact context A = [Dj,...,Dy| where S = D,,.
Therefore, if Ty, = C;M1C; C L, then it must be the case that 7, = C;MC;E L. O
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Proposition 4.2.23. Consider a subexpression S and the set of all applicable subexpression
contexts A. If, for all \' € A where A = [Dy,...,Dy| for m > 1 the context graph
does not contain a vertex A" = [D1,..., Dy, 11 Or.(0), Dyy1], then the concept expression
T = ST1Or.(Dyy41) must be unsatisfiable relative to the exact role subexpression context A
where T = @.

Proof. From the proof of Proposition we know that the local domain A/ sub-
sumes the local domain A, for the exact context A = [D,...,Dy] where S =
D,,. Therefore, if there were no individuals in A, which are also instances of
Dy, 1 Or.(Dyy41), then the context graph would not contain any edge (A/, A”). There-
fore, if the edge (A, A”) ¢ E, we find that the expression T must be unsatisfiable as

it is interpreted over the local domain A, which is subsumed by A’,. O

Each vertex in a context graph & labelled with context A = [D1,..., Dy where
each D; for 1 < i < m has the form C; 1 {r.(o) represents a satisfiable expression
nest(A). This is because each context A was generated from role successors along in-
stance chains inspected in (Z,U) which capture the instances of each subexpression
referred to by A; = [Dy,...,D;M<r.(o), nest([Dit1, ..., Dwl)] for 1 <i < m. Continu-
ing our example, the local domains A% and A% capture all those instances of A and B
in their respective contexts. Note that the local domain A* where A4, = [T] is a super-
set of both of these where A% C AM and A% C AM. Therefore, if AMBLC | € Thur
then it will also hold in 7, and 7,.

Figure 4.6: Concepts A, B have various instances 4, c,d and r-successors b,e. While
AT B is satisfiable, no instance of A ' B has an r-successor.

Even if A1 B is determined to be satisfiable in contexts A4, A5 and Ag, we cannot
determine from the context graph that A1 B M 3r.(T) is satisfiable from the contexts
A7 and Ag. To illustrate why, consider Figure where A M B is satisfiable, but
where the only instance ¢ does not have an r-successor. In this case, contexts A7 and
A9 would still have been generated by the instance chase over the role tuples (a,b)
and (d, e), therefore their existence does not necessarily indicate the satisfiability of

AMBM3r.(T). Consider the case where we exclude tuple (d,e), and where only
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instances of A had r-successors. Then, A9 would not exist in the context graph, as
no instance of B has an r-successor. Therefore, we can identify when AN BM3r.(T)
is clearly unsatisfiable when the context graph does not contain vertices of the form
[ M 3r.(o), T] for all ¢ € {A, B}, all the operands in the conjunction, as shown in
Proposition

In general, if any subexpression S of a concept expression C has an empty set
of most applicable contexts K, while it does mean that S is unsatisfiable with re-
spect to J), it does not necessarily mean that C is unsatisfiable under (Z, ) where
CTH) = @. To understand why, consider the case when C = A LI D where DI = @,
where C is still satisfiable as A. Also, consider when C = A Vr.(B) and where no
instance i of A has any r-successors. Then, C is clearly satisfiable with respect to
(Z,U). However, as there were no r-successors of A, the context graph would not
contain any vertex labelled with A where A = [AVr.(o), B] as no r-successors of
A were present to construct it. Therefore, the set of most applicable contexts for the
subexpression B would be empty, as would its context specific interpretation B7*. In
this case, the subexpression Vr.(B) was not particularly interesting, as it describes a
constraint on data which was not present in the knowledge base, and thus is not in-
formative. As our goal is to use the context specific interpretation and context graph
to guide a refinement operator in the construction of concepts which describe data
for the purposes of machine learning and data mining, we are not concerned with
expressions which do not cover at least some portion of the asserted data. For this
reason, we may impose the restriction that every subexpression S of any concept C
under consideration by refinement have a non-empty set of most applicable contexts
which, at the very least, indicate potential satisfiability of S and of C. We encapsu-
late this notion by defining the boolean function ncu(C) which returns true iff all
subexpressions S of C have a non-empty set of most applicable contexts A and are

therefore not clearly unsatisfiable, as follows:
ncu(C) <> VS € sub(C) : A # Q@

We later use the function ncu(S) to ensure that all subexpressions S of a refined
expression C have non-empty most applicable context sets A and therefore may be
satisfiable, and do not clearly cover none of the data in the knowledge base.

In summary, the context graph provides a way of permitting us to attribute a set
of broadly applicable contexts A to any subexpression S of a concept C by retriev-

ing all applicable subexpression contexts appl(C,V,S) for the set of contexts V in
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a context graph & = (V,E). By attributing the set of applicable contexts A to any
subexpression S of C, we are able to compute from each set of local axioms 7, for
A € A together with the context graph whether:

e The conjunction of new atomic or negated atomic concepts with S results in an

unsatisfiable or non locally minimal expression by Proposition
e The conjunction of a new quantified role expression with S results in an unsat-
isfiable expression by Proposition

In the next section, we will define a new pair of downward and upward refinement
operators called p; and v; which operate in accordance with these restrictions by
inspection of a pre-computed context graph & and accompanying sets of local do-
mains A, and local axioms 7. It is important to note that these two restrictions will
not prevent the downward operator p; from reaching any part of the concept space
which may otherwise contain concepts which are solutions to a problem. This is
because atomic concepts cannot themselves be refined further, so their exclusion by
the identification of their unsatisfiability or improperness in conjunction with other
expressions does not impede the ability of p; to reach new concepts. New quanti-
fied role expressions can be refined to reach other concepts which could be solutions,
however not if the new quantified role expression is already unsatisfiable, as any
downward refinements produced by p; from such expressions will also be unsatis-
fiable. Therefore, these restrictions are designed to improve efficiency but not at the
cost of search completeness. Nevertheless, there are practical limitations which re-
quire us to enforce restrictions on the permissible behaviours of p; and v; which do
result in these operators being incomplete overall, as we will discuss in Sections
and

4.3 Building a Context-Specific Refinement Operator

In this section, we will introduce a new refinement operator which utilises the infor-
mation captured in local axioms generated by constructing a context graph to permit
it to avoid certain improper or redundant refinement steps or the construction of
unsatisfiable concepts. Use of such an operator in generate-and-test learning algo-
rithms aims to improve the efficiency of the search by excluding concepts which do
not contribute towards the search for solutions. We present our refinement operator
by addressing each of the refinement cases of pj as described in Section[d.Tand cover

how the context graph and local axioms can be used in each case.
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4.3.1 Atomic and Negated Atomic Concepts

Given a downward refinement operator p, a conjunctive step L is defined as refine-
ment of the kind:
p(C)~CnD

for concept expressions C and D. For this refinement step to be proper we require
that C £ D, for it to be non-redundant we require that D Z C, and for CM D to
be satisfiable we require CT1 D [Z L. In this section, we consider the case when
concepts C and D are both either atomic or negated atomic concepts. The definition

of pp includes the following relevant cases for refinement of a concept C:

{A"| A" € sh(A)}U{AND|D € py(T)}  ifC=A (A€ Ne)
{~A"| A" € shi(A)} U{=AND|D € pg(T)} ifC=—A (A€ Nc)

These cases describe the conjunction of any atomic term with another in the con-
text of the role range concept B. Assume the concepts {A, B,C,D} € N¢ and ap-
ply in the context of B, and where {D C C,C C B,AMD C 1} C T such that
{A,-A,C,-C,D,-D} € Mg. Then, the rules above permit the construction of the
following refinement chains:

1. A~ AMA (as A € pr(T), however A = A)

2. A~ AT1-A (as A € pg(T), however AlMM—-ALC 1)

3. A~ ATIC (as C € p+(T))
We can simply explicitly avoid the first two cases by recognising them syntactically,
however we cannot do so in the last case. While A C may be satisfiable with respect
to 7, as we discussed in Section[4.2] this concept relative to a particular subexpression
context A may be unsatisfiable where 7, = AT B C L. Because pj is not aware of
context-specific information about the satisfiability of such concepts, it will otherwise
always permit A M C. Furthermore, consider the refinement case of p; for handling

conjunctive expressions C; ... C, for n > 2:
{CiN...NCi.1MDMNCit1MN...MCu|D € pg(Ci),1 <i < n}

If the concept chosen to refine within the expression C; is atomic, then the atomic
refinement case above applies, but does not take into account any of the other ex-

pressions in the conjunction. In this case, such a refinement step would be permitted:

ATIBMNC~ ANBMD (asD € p(C), however AMTDLC 1L €7)
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The operator p; permitted refinement to the unsatisfiable concept AT BT D in this
case because C was refined in isolation of the remainder of the conjunctive expression
and ignored the other conjuncts. To motivate a tighter definition for a refinement
operator over atomic and negated concepts within any particular local context A,

consider the following example.

SR

SRR

\ /
Figure 4.7: A diagram representing subsumption relationships between an example

set of concept names N¢c = A, B, C, D, E modelled by local axioms 7, relative to some
subexpression context A.

Example 4.3.1. Figure [4.7| represents the entirety of a local domain A, with the following

two local equivalence groups:
{B,-A} {A,—B}

For the purposes of refinement, we may exclude concepts —A and —B in preference for their
simpler equivalent concepts B and A. The remaining pairwise relationships between the
reduced set of nine concepts {T,A,B,C,—C,D, D, E,~E} as captured by T, along with

overlapping concepts which are not related by axioms in T, are as follows:

Strict subsumption | Overlap Disjoint
EcBCc-DCcT |A:C,—C,—-D A:B,E
DCAC—-ECT | B:C,—C,—E B:AD
Dccce T C:ABE-D,—-E|C:=C
-CcT D : (none) D:B,E,-D
E:C,-C E:AD,—-E
-C:A,BE —E -C:C
-D:A,C,—~E -D:D
-E:B,C,-C,-D | -E:E
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The strict subsumption and disjointness cases describe pairs of concepts which cannot ap-
pear in conjunction together as they will result in a non locally minimal expression or an
unsatisfiable one. The only conjunctive expressions which are minimal and satisfiable are
the overlapping pairs, such as A1 C. For conjunctions with more than two concepts, each
conjunct must overlap with all others for the full expression to be locally minimal, that is for
the conjunctive concept C1 ... Cy, all pairs C;, Cj where 1 < i < j < n, we have that
CijA and C]?ﬁ overlap. From Figure the full set of minimal conjunctions where n > 3 in

this example are:
AnNcCn-D

BMCmn-E
Bm—-Cmn-E
Crn—-DnN=E

Therefore, there are 25 possible minimal conjunctive expressions for this example (the single
top concept, 8 named atomic and atomic negated concepts, 12 overlapping minimal conjuncts
with 2 atoms and 4 overlapping minimal conjunctions of 3 atoms), compared to a total of
27 — 1 = 511 possible atomic and conjunctive expressions, most of which are unsatisfiable or

not locally minimal.

As shown in Example the set of relationships determined over the set of con-
cepts applicable to some context A can be used to inform which concept expressions
are minimal with respect to a context-specific interpretation 7, and local axioms
7). To tighten the definition of p; so as to restrict the construction of concepts to
avoid unwanted refinement steps, we define a new downward refinement operator
denoted p3(C) which is parameterised with the set of most applicable contexts A for

the subexpression C.

Given a set of most applicable contexts A for some subexpression, the set of
atomic and negated atomic concepts which were found to be satisfiable in the con-
text referred to by A is the intersection of all concepts which were found to be not
equivalent to L in each set of local axioms 7/ for each A’ € A. We define the set of

such concepts as arf(A) to represent all atomic role fillers as:
arf(A) =Nyver{A|A€sc(A))st. ThEA= 1}

Furthermore, we denote the common set of equivalence, strict subsumption and dis-

jointness axioms ¢ over all local axioms 7 for all A’ € A where A = {Ay,...,A,} for



84.3 Building a Context-Specific Refinement Operator 83

n > 1 with the shorthand 75 as follows:

Ti=T,N...0Tx

n

By an abuse of notation we also denote the inclusion axioms ¢ entailed by 75 with
-7, suchas C =7 D when T; = C = D.

The operator p5 also makes use of a binary preorder relation < which is imposed
on all concepts which can appear as conjuncts or disjuncts. Initially, we introduce
how the preorder relation < orders simple concepts in order to describe the first set
of cases for pj, but later in Section will extend it for role expressions, then more

complex concept expressions.

Definition 4.3.2. (Concept Preorder <) Given a set of concept expressions S, a concept
preorder is a binary function <: S x S which imposes an order over concepts, such that for
any three concepts C, D, E € S we have:

o Reflexivity: C < C

o Transitivity: If C < D and D < E, then C < E

The concept preorder < can be used by a refinement operator when generating con-
junctions (disjunctions) of concepts such that C; M...MC, (C; U...UC,) satisfies
Ci 2 Cjforl < i < j < n This ensures, for example, that for concepts A, B
where A < B, that only AT1B (AU B) is produced where Bl A (B U A) is not, as
AMB =BMA (AUB = BU A) under any interpretation we consider, as the logical
operators [ and LI are commutative.

We can now describe how the operator pj is defined for simple concepts in conjunc-

tions as follows:

{AlAcarf(A),Acy C,—3A carf(A) st if Cearf(A)
Acy A'Cy, CYU{CNA|CNA€carf(A),
C = A,C overlaps A}
{CiN...NC,NA|Ae€arf(A), fC=Cin...Mc,
Chn X ANCicichVA €A :Ci € arf(A) —

C; overlaps A}
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Note that these cases do not yet cover role expressions (§4.3.2), concept disjunction
(§4.3.3), or concrete domains (§4.4). In contrast with pj, the operator pj; incorporates
context-specific knowledge such as local axioms over the concepts it uses to reduce
the chance of generating an improper refinement, or to generate non-minimal or
unsatisfiable concepts. In doing so, pj fails to be complete as it explicitly disallows
the construction of certain non-minimal or unsatisfiable concepts. This is by design,
however, as we wish to prune such concepts from the space under consideration by
a refinement operator as they do not aid in the search for solutions for a learning

problem.

Example 4.3.3. Given simple concepts and their relationships from Example which are
ordered as T < A = B <XC XD X E =X ~C X =D =X —E, the refinement operator 05

traverses the concept space as follows:

T ~~»-=aC ~»-Cn-E
~ C ~~ CMn~—E
~ Cr=D ~ CMN-=DMN=E

~ CnNE
~ D
~E ~ A ~ AT =D
~ AM=C
~ AMC ~ AMNCM—=D
~ D
~> =D ~ 2D —=E
~ B ~» BT —E
~ BM-=C ~» BM-CMn-E
~ BMC ~ BMCMN-E
~+ E ~ EM-C

This represents an exhaustive traversal of all 24 unique minimal satisfiable expressions from
T.

Despite the use of the preorder < over concepts, Example demonstrates that
the operator p; generated two refinement chains T ~» C~» Dand T ~» =E ~» A~
D which took different paths from T to D. While this indicates that the refinement
operator p; is redundant, it is still designed in such a way as to reduce redundancy,

as it was shown in Example that there are a total of 511 possible expressions
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instead of the 24 produced by p; in this case.

4.3.2 Role Expressions

For any set of most applicable contexts A, the context graph & provides a set of role
names for use in constructing role expressions of the form <r.C for some quantifier
<& depending on the chosen concept language. For example, for DLs based on £L,
quantifiers may be restricted to 3 only, whereas ALC also permits V, and SROZQ
permits both in addition to cardinality quantifiers =", S". A SROIQ knowledge
base may also impose a subsumption hierarchy on role terms, such as s C r where
r,s € Ng. Determining which roles to use together with their quantifiers when
refining concepts is largely pre-computed in the structure of a context graph. In this
section, we will describe how the information captured in a context graph can be
used to extend the definition of the refinement operator p; for refinements of role
expressions.

Recall that in the definition of pg, the set Mp captures atomic concept expressions
appropriate for use as starting points for refinement in the context of some role range
described by the concept B. The set Mp also includes role expressions Jr.(T) and
Vr.(T) for all roles r with a domain ad(r) not disjoint with B, and are introduced
as refinements of the top concept T. While this definition restricts the set of role
expressions to those which are appropriate in conjunction with a domain concept
B, this is only determined relative to knowledge captured in the TBox. Under a
context-specific interpretation we are able to pre-compute tighter restrictions on the
set of refinements of role expressions relative to certain contexts and local domains.
For example, consider the refinement case for p; which describes refinements of

concept expressions C where C = Jr.D:

(

{3rE|A=uar(r),E€ py(D)} ifC=3rD
s(C) = U {3r.(D) ME|E € pp(T)}
U {3s.(D)|s € shy(r)}

Now consider a knowledge base containing role r, concepts B, C, D, E, axioms C T

B,E E D € T, where role r has domain B and range D. The operator p; will permit
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the following two refinement chains:

dr.D g dr.E
B

3r.D ~, (Ir.D)11C

Under an open-world interpretation Z, the concepts 3r.E and (3r.D) M C are both
satisfiable. However, consider the case where no r-successor is an instance of E,

and no instance of C has an r-successor which is an instance of D, as illustrated in
Figure 4.8

B D
— | r | T
— | e

C
\—— N—
Figure 4.8: Concepts B,C, D, E with their subsumption relationships shown and tu-
ples of role r pairing instances of B and D only.

Under a context-specific interpretation 7, we would find that (3r.E)7* = @ and
((3r.D) M C)" = @ in this case as no such tuples in r7/* are known to satisfy these
concepts. While this situation can be realised after evaluating such concepts relative
to J), we do not want the refinement operator to produce them in the first instance
if possible, in order to improve the efficiency of a learning algorithm relying on pg
to generate such expressions. In this case, we aim to use the structure of the context
graph & to guide refinements which explicitly captures permissible combinations of

concepts and pre-quantified role expressions.

Considering the example illustrated in Figure a context graph computed over
a knowledge base containing the concepts, role, and role tuples as shown for the role

quantifier 3 would contain a vertex for context A = [..., B] and edges (A, ') where:
AMe{[...,BN3r (o), T],[...,BA3r(o),D],[...,BA3r (o), —E|},

In this example, there is no context containing [... M 3r.(0), E] in the context graph,
so the refinement step Jr.D ~» Jr.E can be recognised as generating the unsatisfiable
subexpression 3r.E. Similarly, as there are no contexts containing [...,CM3r.(o), D],

the refinement step 3r.D ~» (Jr.D) M C can also be recognised as generating the
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unsatisfiable subexpression (3r.D) M C, which can be avoided.

In general, the set of role expressions ¢r.C for some concept C which may be satis-
fiable in any context A can be determined directly from the context graph & = (V,E)
as follows. Given a set of most applicable contexts A for any subexpression context,
each A’ € A may be associated with a set of succeeding contexts {A" | (A',A") € E}.
Where any A’ = [Dj,...,Dy] for n > 1, each succeeding context A” has the form
A" = [Dy,...,Dy M <Or.(0y), Dyt1]. We denote the set of all succeeding role expres-

sion fragments of the form <¢r.(D,,41) given A as re(A) follows:

re(A) = () {Or(Dys1) | V(A,A") € E where A" = [Dy,..., D, 110r.(0y), Dyga]}
VAL
As shown in Proposition if not all succeeding contexts A" end with [..., D, M
Or.(0y), Dyt1], then the fragment Gr.D,, 1 is unsatisfiable in all applicable subexpres-
sion contexts A, and therefore also in the context of the subexpression being refined
for which A were applicable. Therefore, the set re(A) contains all role expressions

fragments which are at least permissible, even though some may be unsatisfiable.

In refinement, new role expressions are introduced either as refinements of the
top concept T, or in conjunction with some other expression such as an atomic or
negated atomic concept, another role expression, or some conjunction thereof. For
downward refinement, we select the most general of all role expressions in re(A)
to introduce into any subexpression context. If the knowledge base supports role
inclusions such as r 1 s for roles r,s, this information may also be used in selecting
the most general set of role expressions. The initial set of role expressions ir(A) to
introduce into downward refinement are the most general of the form 3r.D, Vr.D,
and S"r.D, along with any ="r.D in the absence of any expression 3r.D, as the

former is downward refined directly from the latter.
ir(A) = {Or.D | Or.D € re(A) A—=3(Os.E) € re(A) s.t. (Or.D) Ty, (Os.E)}

Role expression subsumption for roles r,s, concepts D, E and any quantifier ¢ €
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{3,V, #"} where n > 1 can be summarised as follows:

Cs.DEOr.D whensCr
Sr.DCOr.E whenDLCE
Vs.DCVr.E whensC rand D C E
s DC 2"y, E whenn>mandsCrand DC E
Sts D S"y E whenn>mandsCrand DC E

Sy D for n > 0 is the one where

Note that the most general expression of the form
D is as specific as possible, such as when D = 1. Downward refinements of Sty D
require upward refinements of D, an operator for which will be presented in Sec-

tion To illustrate why this is the case, consider Example

A B
r /".X

.< r C
w B

N—

Figure 4.9: An example set of concept names A, B, C with a single role tuple group
of three tuples.

Example 4.3.4. Consider a set of concepts A, B,C where C T B, together with a single
role v and assertions r(w, x), r(w,y), r(w,z), A(w), B(x), C(y), C(z) as illustrated in
Figure In this example, we have (<?r.B) Y1) = @ as w has three r-successors in B.
Now consider the downward refinement step <*r.B o <2r.C where C € p(B) as C C B.
Here, we find that (<2r.C)ZH) = {w} because w has two r-successors in C. Therefore, as
(S2r.C)ZU) D (<2¢.B)EH), the refinement step was generalising (upward). In general,
Sr.C E S".D for role r, concepts C, D where D C C, and n > 0.

We introduce the most general role expressions of the set ir(1) in conjunction with

simple concepts, other role expressions and conjunctions thereof with new cases for
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the operator p5, as follows.

{CNor.D | V(or.D) €ir(A) st. C < (¢r.D)} if C € arf(A)
pi(C) =< {CM...NC,NOr.D | V(Or.D) €ir(A)st.  if C=Ci...NGC,
C, X (or.D)} (n>2)

In this way, we rely on the concept precedence operator permitting atomic and

negated atomic simple concepts before any role expression, as follows:
A=A <X Cr.C X Cps.D

For any concept name A, concepts C, D, role names s, € Ng and quantifiers <1, 5.
Note that the precedence operator relies on an ordering of role names 4, ..., 7, such
that if any r; C r/, then i < j. While the precedence order of differently quantified
role expressions is unimportant, we require that they appear after any atomic concept
expression A which includes T or any named concept which is the range of a role
expression. In this way, < ensures that multiple role expressions such as Jr.D M
...M3dr.E may appear in conjunction, but does not permit both Jr.D ... Vs.E
and Vs.E1...713r.D which would lead to redundancy in the search by refinement.
Additionally, because of the equivalence (Vr.C) M (Vr.D) = Vr.(C D), the operator
will not permit conjunction with an expression of the form Vr.C if another conjunct
Vr.D is already present.

Once introduced, existing role expressions ¢r.D may be downward refined as
Or.D ~» Os.E by modifying one of: the quantifier & ~» 0O, the role name r ~~ s, or
the filler D ~» E. In each case, the preceding expression will have been associated
with a non-empty set of most applicable contexts, A. For any of these refinements,
the set A may be different, but must be non-empty as otherwise it indicates that
the refinement leads to an unsatisfiable subexpression. For example, consider the

refinement of the nested concept expression:
CMn3r.(DM3s.(E)) ~ CMN 22r.(DM3s.(E))

In this case, all most applicable contexts A € A for the nested subexpression E were
those of the form A = [A; M 3r.(o1), Ay M 3s.(02), A3] where C = Ay, D C A,
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and E C T Az in each of their respective contexts. For this such refinement to be
permissible, we require that there is a non-empty set of most applicable contexts
A’ for every subexpression. For example, for subexpression E, the non-empty set
of most applicable contexts A’ after this particular refinement must have the form
A =[A11 Z?r.(01), A2 3s.(02), Az]. If not, it must have been the case that this par-
ticular refinement led to an unsatisfiable subexpression, as no instance chains were
found in the instance chase which constructed the context graph which satisfied the

nested expression nest(A').

In this way, we are able to use the context graph and most applicable contexts of
some subexpression S to determine if any refinement to S leads to any subexpression
S" of S which is unsatisfiable. As described in Section the boolean function
ncu(S) evaluates to false if any subexpression S’ of S has an empty set of most
applicable contexts. In order to compute ncu(S), all most applicable contexts A’
for every subexpression S’ of S need to be recomputed. This is a straightforward
procedure which constructs the sets A’ for each S’ by traversing the structure of S
and matching most applicable contexts over the edges of the context graph & until
all subexpressions S’ are analysed, which we require for further refinements of the

concept containing the subexpressions S’ with p;. We now describe the cases for py
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which handle the refinement of role expressions, as follows.

{C1MN...MNCs.EM...MCy | ifC=Cn...nN
V(©s.E) € p;(0r.D) s.t. Or.DMC; M
vcig]'gn s .E j C]/\ LI Cn (l S 1’1)

neu(CyM...MNOs.EM...MCy)}
{FrE|E€p;(D)}U if C=3r.D
{3s.(D) | s € shy(r)} U
{?"r.(D) | ?"r.(D) € re(A) An>2A

5 (C) = -3(Z"r.(D)) € re(A) st. m <nAm > 2}
{Vr.E|E € p;,(D)} U{Vs.(D) | s € shy(r)} if C=Vr.D
{z"r.D | ?"r.D € re(A) An>mA if C = 2"r.D

=3(>°r.(D)) € re(A) s.t. m <o <n}uU
{#"s.D|s € shy(r)} U{>"r.E | E € p5,(D)}
{S"r.D| S"r.D € re(A) An < mA if C= S"r.D
=3(S°r.(D)) €re(A) st.n <o <m}U
{S"s.D|s € shy(r)} U{S"r.E | E € v5,(D)}

In the definition above, the set of most applicable contexts A’ denotes those for the
interior expression o being refined in the role expression <r.(o). Note also that down-

<n

ward refinements of maximum qualified cardinality role expression S"r.C relies on

the use of the upward refinement operator v;, which is described in Section W

With most of the cases for p; now defined, we now turn our attention to disjunc-
tive subexpressions of the form C; U... U C, for n > 2 in Section

4.3.3 Disjunctive Expressions

To extend the operator p; to handle disjunctive expressions, we follow the definition

of pp which only permits the construction of disjunctions as refinements of T, as
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follows.

{C1U...UCy | Cie Mp(1 <i<n} ifC=T
{GiU...UC1UDUC 1 U...UuC, | fC=CU...UuCy(n>2)
D € pg(Ci),1<i<n}U
{(Ciu...uCy)MIDID € pg(T)}

We observe that refinements of disjunctions with the conjunction of another concept
expression such as (C;U...UCy) ~ (C;U...UC,) M D is simply a short-cut to
refining in n steps to produce ((C; M D)LU...U(C, M D)) because conjunction is
distributive over disjunction where (CLUD)ME = (CME) M (D ME), therefore we

omit this case.

In the case of p;, we permit the introduction of disjunctive expressions from the
set of any most general atomic concepts permissible in any context A, which we

define as mga(A) where:
mga(A) = {A|VA carf(A), -3A" carf(A)st. ACy A’}

Note that the set mga(A) may contain T as it is always the most general concept. We

now define the handling of disjunctions with p; as follows.

"

{C1|_|...|_|Cn ’ Clgign Emga(/_\) ifC=T
VCi<icj<n : G 2 Cj}
p;(C) =
{CU...UC 1 UDUC 1 U...UC, | fC=CU...uC,
D€ p;(C)ACie1 2D 2Cipq, 1 <i<n} (n>2)

Note that these rules permit the introduction of disjunctions suchas ALUAL...LUA
for the same atom A. Clearly, such a refinement step is improper, but is necessary in
order to reach concepts or subexpressions such as A; LI...LI A, where each A; is some
unique complex expression such as A <r.(B). In a search procedure, introducing

disjunctive expressions with a large number of disjuncts n significantly expands the
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search space. Therefore, we may permit a user to manually impose a global limit on
n, the number of disjuncts in any disjunction, to limit the search space.

Furthermore, improper refinements are possible, for example, when refining A U
B~ AUD where D € p;(B) and D C B C A. In this case, (AU B)/r = (AU D)%
in any context A as A is the subsuming concept. Any number of refinements of the
disjunct B will always produce an equivalent expression, and therefore represents
improper refinement steps.

When applying such refinement operators to a learning problem we may wish
to avoid such refinements as they are not productive, in that they do not alter the
coverage of the concept containing the refined subexpression A U D yet they increase
the complexity of the subexpression in an unguided way. We tackle this problem with
a method of altering the behaviour of p; by suspending refinement of any disjunctive
operand which is strictly subsumed by another. However, testing the subsumption
of concepts without first computing their interpretation under 7, is difficult, as it
relies on a description logic reasoner to compute subsumption under an open-world
interpretation which can be computationally expensive. An alternative may be to use
structural subsumption to test if some operand B subsumes D based on its structure
alone, however such algorithms are difficult to define, and as recognised in work
which defines pj [58]], no tractable complete structural subsumption algorithms exist
for the DL ALC [6]. As we are considering more expressive concept languages than
ALC, this is not a feasible solution either. In Chapter [5| Section we introduce
a novel method which permits us to recognise when operands of disjunctions are
subsumed in any context by persisting information captured during the computation

of their coverage, which is used in subsequent refinements.

4.3.4 Upward Refinement

In the definition of the downward refinement operator Py, we encountered a need
to refine upwards such as when downward refining maximum qualified cardinality
restrictions S"r.D as shown in Example [4.3.4). In this section, we will define an up-
ward operator for use in these circumstances to complement the overall construction
of p5.

Upward refinement, or concept generalisation with operator v; is not as straight-
forward to define as downward refinement as we have presented with the definition
of p;. Typically, upward refinement begins with refinements of the bottom concept

1L, just as downward refinement begins with refinements of most general concepts
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like T. In order to generalise L ~~, C in a step-wise manner for some C, we require
A

that each concept C be as specific as possible at each step.

The problem of generalisation has been tacked in ILP before. Amongst the tech-
niques considered are ones which generalise by first computing highly specific con-
cepts which tightly describe example instances in the domain, which in our case
corresponds to each individual i where i € A,. Over these specific concepts, a gen-
eralisation operator is then applied to produce concepts which subsume subsets of
specific concepts progressively until either solutions are found, or the most general
concept is reached [67]. However, when |A,| is very large for some context A, and
the concept language has high expressivity such as those we are considering, this
approach will likely result in the generation of a vast set of concepts for upward

refinement which may be inefficient to traverse.

In order to avoid the potential inefficiency of generalisation over the large space
of possible concepts in any context A, we intentionally define our upward refine-
ment operator v; to be incomplete by generalising from specific concepts which are
composed exclusively of simple concepts from arf(A) without role expressions. The
rationale behind this approach is that we may still want to take advantage of max-
imum qualified cardinality restrictions S"r.C in our hypothesis language, but also
wish to restrict the range of concepts that C may take on to limit the overall search
space of concepts, as has been a goal throughout this chapter. We leave the definition

of a complete upward refinement operator for DL concepts to future work.
We begin by defining the set of most specific concept expressions in a set of most
applicable contexts A composed exclusively of concepts from arf(A) as the set msc(A)

as follows:
msc(A) = {A1M...MMA, | Vi€ Az Vigjekan Aj € atom(i) N =3 Ag s.t. Aj g Ax}

The set msc(A) provides us with all the most specific locally minimal conjunctions
of simple concepts which are permissible in the context described by all the most

applicable contexts A.

Example 4.3.5. Given the set of concepts and strict subsumption, overlap and disjointness
relationships from Example the set of most specific concepts are:

msc(A) = {D,(CME),(AN~C),(EMN~C),
(AN CM=D),(CN-DM~=E),(BN-CM-E),(BNCM-E)}
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This set can be compared to the top-down traversal of the downward operator p; of Exam-
ple where each of the concepts in msc(A) appear at the end of downward refinement

chains.

The upward refinement operator v; employs the set msc(A) as starting points
in refinement from L to conjunctions in the same way that p; uses the set mgc(A)
in generating refinements of T to disjunctions. From these concepts, generalisation
operators either remove a conjunct, replace a single atomic or negated atomic concept
with a subsuming concept from arf(A), or create a disjunction with an element from

msc(A) if it is not already subsumed as shown in the definition of v; below.

Definition 4.3.6. Given a concept expression C and a set of most applicable contexts A, the

upward refinement operator vy (C) is defined as:

({D|D€msc(/_\)} ifC=1
{A"| A esh(A)} U ifC=A,A € msc(A)

(CUA"| A" € msc(A), A" Z5 C}
(C1M... NG NCiuNCy [1<i<n}U  ifC=CiM...NCy(n>2)
v;(C) = {CUA"| A" € msc(A), A" Lz C}
{CGU...UCG 1 UDUC1UCID € vy(Cy), ifC=CiU...UCy(n>2)

1<i<nVC<i<n:D %y C}U

{CiU...UC,UA|A € msc(A),
VCi<i<n: A ZLyg, Ci}

\

The definition of operator v; is designed to reduce potential occurrences of im-
proper refinements when refining or generating disjuncts, as it ensures that disjuncts
are not subsumed by some other disjunct. This ensures that the operator does not

generate expressions such as C LI D where D C 7, C, as otherwise (CLID) = C.

4.4 Learning Over Concrete Domains

One aspect of concept refinement we have not yet addressed is the handling of ex-
pressions over concrete domains such as number, boolean or string literals. We aim
to improve methods for concept search by refinement over knowledge bases with

potentially large data sets capturing experimental data which is likely to make use
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of concrete domains, so we will incorporate them into the definition of the [ refine-
ment operator. The DL-LEARNER system employs methods of handling such domains

as part of the downward refinement operator p; [56]], which we will now describe.

Ordered sets of literals such as the integers Z, reals R, boolean values B and
strings S are all examples of concrete domains in OWL for which so-called datatype
properties range over. Similarly, in a DL, datatype roles are those which pair abstract
individuals from A to literals from some concrete domain, as described in Defini-
tion 3.2.6

At the time of writing, the DL-LEARNER system currently supports real (double)
and boolean literals accessible as d-successors of any datatype role d. Real-valued
literals are analysed as values; where values; = {I|C = d(i,])} for real-valued [
sorted in ascending order by <. When viewed as a list, the ordered set values; can be
indexed to refer to the i*" element with values,[i]. In order to generate facet restrictions
( over this list for use in refinement, a pre-determined number of splits 5,4y is
specified and used to limit the number of ways a refinement operator can partition
values; with facet restrictions such as < v and > v into a list of pre-selected values
for datatype role d as splits;, which is defined as follows:

|values;|

splits; = {t;|i = ,t; = 0.5 (valuesy[|i-j|] +wvaluesy[[i-j| +1]),1 <j < Spmax}

max 1

where |v] is the floor function which rounds real values down to the closest integer.
The downward refinement operator p, then incorporates the list of pre-calculated list
of split values splits; for the datatype roles d against facet restrictions such as < v,

> v where v € splits;, along with boolean value facet restrictions (= true), (= false)

as follows:
@ if C = (= true)
@ if C = (= false)
P5(C) = B .
{>w|v=splits;[i],i > 1,w = splits;[i — 1]} ifC=(>0)
{<w|v=splits;[i],i < tsplits;, w = splits;[i + 1]} if C= (< v)

The set of terms used as initial expressions for refinement in Mp is also extended to

contain the following facet restrictions, depending on the datatype of range expres-
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sion B for datatype role d which is assumed to be either only boolean or double:

{(= true), (= false) } (if d ranges over boolean values)

{> splits;[smax|, < splits;[1]} (if d ranges over double values)

As recognised in the presentation of this particular method for handling numerical
facet restrictions by refinement, the pre-determined splits method was chosen to limit
the number of steps a refinement operator takes if there are very many literals in
the domain values; for some datatype role d. However, depending on the number
of splits chosen, this approach may permit sub-optimal choices of numerical facet
restriction values if optimal choices lie between two adjacent split values splits ,|i]
and splits[i + 1].

In our work, we aim to significantly improve upon the handling of numerical
facet restrictions by the refinement operator p; by taking advantage of information
in the context graph and associated data structures which capture a more detailed
distribution of literals in each subexpression context A. We begin by describing an
extension to the closed-world context-specific interpretation 7, for handling facet
restrictions over boolean, string, integer and double concrete domains in each context
A

4.4.1 Context-Specific Interpretation of Datatype Expressions

Datatype restrictions in OWL2-DL and the underlying logic SROZQ(D) permit ex-
pressions which combine facet restrictions appropriate for particular concrete do-
mains D with boolean connectives such as conjunction A and disjunction V. For
example, the domain of boolean values B = {true, false} permit the facet restriction
=, the domain of finite strings S permits = along with regular expressions to match
particular strings s € 5, and numerical domains such as the integers Z and reals
R permit the facet restrictions <, <, >, >. Restrictions over a common concrete do-
main can then be combined with connectives to represent new expressions such as
double[(> 4.2 A < 5.1) V (> 5.2))] which represents the two sets of double-precision
real-typed literals [4.2,5.1) and (5.2, 00). The closed-world context-specific interpreta-

tion of such expressions is as follows, where R, S are facet restrictions over a common
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concrete domain D € {B,S,Z,R}:

(= true)?r = {v € A® | v =true} (= false)” = {v € AP | v = false}
(=) ={venl|v=s}

(int[>n])" = {v € A? | v > n} (double[> n])" = {v e AR |v>n}
(int[< n])"r = {v e A? | v < n} (double[< n]) = {v e AR |v<n}
(int[>n])" = {v e A? | v > n} (double[> n])I = {v € AR | v > n}
(int[<n))r ={ver?|v<n}  (double[<n])/ ={ve AR |v <n}
(R A S)jA — RIS (RV S)j)\ = RIr U S

Note that we do not interpret regular expressions over strings in our interpretation,
only equality, as we do not consider refinements of regular expressions in our learn-
ing algorithm. It is plausible, however, that such a refinement may be useful for a
learner over the domain of natural or computer languages.

OWL2 also supports date and time literals which can be constrained by facet
restrictions similar to those with numbers. Again, we do not consider them here,
but they could be included in a straightforward way [66]. Perhaps with the excep-
tion of dates and times, the interpretation J) over boolean, string, integer and double
domain restrictions provides us with a degree of expressivity suitable for posing sim-
ple restrictions over most common data types we expect to encounter in knowledge
bases.

Definition which describes the interpretation 7, over concept terms extends
naturally with the concrete domain interpretations above, permitting concepts such

as:

Concept Interpretation

(Ir.(boolean|[= true]))’» | All individuals i in A, which have at least one r-

successor literal equal to true.

(Vr.(int[> 5]))% All individuals i in A, for which all r-successors are
integer literals greater than 5.

(S%r.(double[< —2.2]))7* | All individuals i in A, which have at most two r-
successors which are double values less than or equal
to -2.2.

Note that the set of literals applicable in any subexpression context A ending
with a datatype role d is A, which differs from the sets values; for datatype roles d

in the definition of py, as it is limited to only those literals which are applicable, or
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reachable from the set of examples, in each context A. This allows us to partition the
literal data in the interpretation (Z,U) for any knowledge base into specific subsets
A, which permits us to define context-dependent splitting methods over relevant
subsets of literals.

The instance chase of Algorithm [ describes how to construct local domains A,
for every context A captured in a context graph &. The construction of each local
domain A) over datatype literals affords the benefit of understanding the limited set
of literals in each context over which to describe facet restrictions.

Given an exact subexpression context A which corresponds to a role filler as a
quantified datatype literal such as A = [Dy, ..., D, 1 <d.(oy,), TP] for some datatype
D, we know from Corollary that an approximation of the local domain A, is
the intersection of all local domains for all most applicable contexts A describing A
from the context graph. Therefore, we can compute the limited set of literals A;LD by
taking the intersection of all A for all A’ € A.

Once computed, the limited set of literals in each AZD can be used to pre-determine
appropriate splits for refinement. However, we aim to take the computation of facet
restrictions in each context a step further by recognising that Algorithm @ attributes to
each literal in each local domain AY the set of example individuals e € £ from which
they were reachable. This information is useful given the intended use of the concepts
being refined, which is to act as hypotheses in a classification or subgroup discovery
learning problem as we will present in Chapter |5, In these learning problems, the
sets of examples are labelled with symbols from () and concepts are often sought
which describe the individuals and literals reachable from examples with one label
w € O to the exclusion of those from all others Q) \ {w}. Given any set of numerical
literals AZD where D € Z,R ordered by <, we can identify runs of literals which are

reachable only from examples of one label /, as shown in Example

Example 4.4.1. Consider a set of doubles A]}f ={-02,1.3,3.5,4.0,7.7,10.6,11.2}, a set of
examples labels Q) = {+, —} and the set of examples € which are partitioned into two labelled
sets as £ = ET U E~, and where an instance chase procedure has attributed to each of the
doubles the following labels as being reachable from a labelled example e € E* ore € £~ any
of the contexts A’ € A as follows:

Literal: | —0.2 | 1.3 | 35 |4.0|7.7|10.6 | 11.2
Labels: | + |+,—|+,—| + | + | — —

All of the doubles reachable from examples labelled with either 4+ or — can be described with
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the following facet restrictions:

Label Restriction
+ double[< 10.6]
- double[> —0.2]

A downward refinement of either of these restrictions targeting a particular label + or — may

be the following:

Label Refinement step Excluded
+ double[< 10.6] ~» double[(< 1.3) V (> 1.3 A < 10.6)] {1.3}
+ double[< 10.6] ~~ double[(< 3.5) V (> 3.5A < 10.6)] {3.5}
- double[> —0.2] ~» double[(> —0.2A < 4.0)V (>7.7)] | {40,7.7}

In each of these cases, the refinement steps excluded a single largest contiguous run of

literals labelled with the opposite label from the set covered by the preceding expression.

Example demonstrated that numerical facet restrictions can be constructed
from any approximating local domain A? based on the example labels from ) at-
tributed to each literal in the set. We denote the technique for constructing refine-
ments of numerical domains in this way the run exclusion method. To describe this
method, we first define several functions which aid in its explanation.

For simplicity, we denote the label w where w € () of any example ¢ € £ as being

computable by function label(e) defined as follows:
label(e) = w where e € £¥

The function label(e) is deterministic for any example e as we assume all examples
are only given one label each, and the sets £“ for all w € () are pairwise disjoint.
However, any single literal v may be reachable via instance chains from several exam-
ples, therefore may be attributed with multiple labels from () by the instance chase.
The set of labels attributed to any single literal v amongst a set of most applicable

contexts A is retrievable by the function labels(v, A) defined as follows:
labels(v,A) = {w | VA € A, 3(A,v,e) € L where label(e) = w}

where the set L contains triples (A, v,e) which denote that individual or literal v in

the local domain A, for subexpression context A was reachable from example ¢, and
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was constructed by the instance chase of Algorithm[4 The set of literals labelled with

w common to all contexts A € A is denoted literals(w, A) as follows:
literals(w, A) = {v | Vo € AP where w € labels(v, A)}

Assuming a non-empty numerical domain A}\D and non-empty subset literals(w, A),

we denote the global minimum g,,;,, and maximum g;;,y, and labelled minimum ¢,

min
and labelled maximum [{,,, as follows:
Qmin = Min A? 19, = min literals(w, A)
Qmax = max AP 14 = max literals(w, A)

For some example label w we may compute the lower bound Ib(w, 1) and upper

bound ub(w, A) over the domain AP as follows:

- —oo if 1%, j - o if ¥
lb(w, )\) — min gmzn ub(w, )\) _ max gmax
L., otherwise I . otherwise

We denote the set of predecessor and successor literals pre(v, 1) and suc(v, ) over

an entire domain A? as follows:

pre(v,A) = {v'| v’ € AP where v’ < v}

A
suc(v,A) ={v'|v € AP where v’ > v}
Given any label w € ), we can now define the lower bound Ib(w,A) = v%. and

upper bound ub(w,A) = v%,, for all literals with label w over set A?. Then, again
for any individual label w, we can compute the set of most general numerical facet
restrictions with function mgnfr(w,A) as follows where t is a numerical datatype,
either t = int when D = Z or t = double when D = IR:

,

TP if o, = —oo AU, =00
t[> max pre( mm’/_\)] if Vnax = A pre( Uinins ) #O
mgnfr(w, X) = t[< min suc(v4,,, A)] ifol. = —cio A SUc(vipaes _) #+0
t[Z mzn/\ < Umax)] lf pre( mzn/ /\) = Suc(vmaxl A) = @
t[> max pre(v, ,A) A otherwise
< min suc(v%,,, A)]

\

Most general numerical facet restrictions describe starting points in refinement which
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cover all literals in a context for each label w € (). As demonstrated in Example
subsequent refinements of most general numerical facet restrictions generated to
cover literals with label w will seek to exclude the largest contiguous run of liter-
als with other labels w’ € Q) where w’ # w. This strategy aligns with the motivation
for classification and subgroup discovery learning problems where we aim to gener-
ate concepts which describe the literals reachable from examples of one label to the

exclusion of any others.

The kinds of numerical facet restrictions we consider are only those which are
disjunctions of expressions N = t[F; V...V F,] for n > 1 initially constructed by
mgnfr(w, A) to target literals with label w. Once this is performed, the expression N
and all of its subexpressions and refinements thereof will be attributed with label w,
denoting the target label of the intended labelled literals in the interpretation of N,

which we denote with the subscript N,.

Any F; in a targeted numerical facet restriction expression N, = t[F; V...V F,| for
1 <i < n must represent a range of numbers which is either bounded above, below,
or both as a conjunction of facet restrictions. Specifically, each F; must take the form
F; = fuins Fi = fmax, ot F; = (finin A finax) Where frin € {> Opin, > Opin} and frgx €
{< Umax, < Umax} which, when appearing together in a disjunction, describe non-
overlapping numerical ranges with an inclusive or exclusive lower bound v,,;,, an
inclusive or exclusive upper bound vy, or a combination of the two. Each numerical
range expression F; must cover a non-empty set of literals from the approximate local
domain where NJ' C A? for the set of most applicable contexts A as retrieved from

a context graph.

In order to downward refine any N,,, we modify one of the interior conjunctive
expressions F; and compute the set of longest contiguous runs of literals labelled
with any other label w’ where w' € ) and w’ # w. We define contiguous to mean
any unbroken sequence of literals v;, ..., v; of length (j —i) > 1 from a set of literals
ordered by <suchasV =wvy,...,0;,...,0j,...,0, for 1 <i < j < n where each literal
v; to vj shares a common label w’ and which are bounded by v;_; and ;11 labelled
with w. In Example the ordered sets {1.3} and {3.5} were examples of largest
contiguous runs of literals labelled with — amongst those labelled with +, and the
ordered set {4.0,7.7} was the only largest contiguous run of literals labelled with +
amongst those labelled with —. Given an ordered set of labelled numerical literals
V, the function contig(w, V) can be used to determine all contiguous runs of literals
labelled with w and is described in Algorithm
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Algorithm 5 The contig(w,V) function to compute the set of all contiguous non-
empty runs of numerical literals labelled with w from a non-empty ordered sequence
of numerical literals V = {vy,...,v,} where n > 1.

1: function contig(w, {v1,...,vn})

2 S=0 > The set of contiguous runs in V
3 R=0© > The current set of literals in a run
4 i=1 > Literal index starting with v,
5: while i < n do

6 if w € labels(v;) A 3w’ € labels(v;) s.t. w' # w then

7 if R # @ then

8

9

S:=SU{R}
: R=0

10: end if
11: S=SU{{v}}
12: else if w € labels(v;) then
13: R:=RU{v;}
14: else if R # @ then
15: S:=SU{R}
16: R=0
17: end if
18: i=1+1

19: end while
20: if R # @ then

21: S:=SU{R}
22: end if
23: return S

24: end function
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The sets of all equally longest contiguous runs of a set contig(w, V) is defined as

contig,,..(w, V') as follows:

contig,  (w,V) ={R | VR € contig(w, V) where 3R s.t. [R'| > |R|}

Downward refinements of a disjunctive numerical facet expression N, = {[F; V...V
F,] can be performed for each F; where 1 < i < n by the function split(F;, w,Q, )
as described by Algorithm [6] For each F; which is intended to target literals labelled
only with w, the split algorithm targets all other literals labelled with w’ € Q\ {w}
by constructing sets of longest contiguous runs of literals with contig, («’, Fiji),
then subtracts these from 1—“1“7X to produce new literal sets to be covered by the refined
expression F/. The split algorithm makes use of the function rnr which performs the

expression refinement, and is defined below.

Algorithm 6 The split(F,w,(),A) computes a set of downward refinements for the
numerical facet restriction F targeting literals with label w by exclusion of runs of
literals with other labels from () relative to a set of most applicable contexts A.

1: function split(F,w, 1)

2 Fh = {vy,...,0,} > Ordered set of literals covered by F in A;?
3 S=0

4 for all w’' € ) where ' # w do

5: for all {v;,...,v;} € contig,,,.(w,F71) do

6: ifi =1and j = n then

7 low := @, high := @ > Entire set removed
8 elseif i =1 and j < n then

9: low := @, high := {v]-+1, e > LHS removed
10: elseif i > 1 and j = n then
11: low:={vy,...,0i1}, high =@ > RHS removed
12: elseif i > 1 and j < n then
13: low := {vy,...,vi_1}, high = {vj41,..., 04} > Split in two
14: end if
15: S = SUrnr(F;, low, high)
16: end for
17: end for
18: return S

19: end function

The function rnr(F, low, high) takes an existing facet restriction expression F where
F7i = {vy,...,v,} and a new lower and upper target literal set low = {vy,...,v; 1}

and high = {v]-+1, ...,0n} as computed by split(F,w, ), A) to produce a set with the
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new facet restriction F/ where (F')7

rmr =

%)

%)

{> o}

{> v A <o}

{(>vN<v) V(> v]-)}

{> v}

{> v A <uv;}
{(ZoA<v)V(>0)}

{> v A <vp41}

{< v}
{(<v)V(>vA<v,11)}
{>vA<v,}

{< v}
{(<o)V(>vA<on)}
{>vA <vp41}

{> v <o}
{(>vA<v)V(>0A<vu41)}
{>v A <o}

{> v A <v;}

{(>oN<v) V(>0 A< 0,)}
{> v A <vpg1}

{Zu A <o}

{(ZoA<) V(>0 A <vu41)}
{>ovA <o}

{Z N\ < Ul‘}

\{(2 01 A< 0) V(>0 A< 0,)}

= low U high, vp < v1 and v,, < v,41 as follows:

if low = @ A high = @
if low U high = F-jZ

if FF=(>v) ANow=0Q

if F=(>uv) ANhigh=0

if F; = (> o)

if F;=(>0v) Alow

if F=(>v1)ANhigh=0

if ;= (> 1)

if FF= (< vy41) ANow =@

if F; = (< vys1) ANhigh =@

if F; = (< op41)

if FF=(<v,) ANlow=Q

if F= (< v,) ANhigh=@

if FF=(<vy,)

if FF=(>0A<vy41) ANow =@
if FF= (>0 A <vyy1) Nhigh=0Q
if FF= (>0 < 0y41)

if F=(>0A<v,) ANlow=0Q
if [;=(>0v9 A <vy) Nhigh=0Q
if FF= (>0 A <vy,)
ifF=(>0A<vy41)ANlow=0Q
ifFF=(>v1 A <vy41) Nhigh=0Q
if = (>0 A <0p41)
ifF=(>0vA<uv,) ANlow=0Q
ifF;=(>vA<uv,)ANhigh=0
if F= (>0 A <o)

We can now define how numerical facet restrictions N over the integers Z and dou-
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bles R are refined with the downward refinement operator p 5, as follows:

{N/, | Vw € O, N/, € mgnfr(w,A)} if N=TZorN=TR
px(N) = {{{RV...VEV...VFE]|Vie{1,...,n}, if Ny =t[FV...VF)]
VF! € split(F;, w, Q, 1)} where n > 1

Note that the definition of p;(N) for numerical facet restriction expressions N
relies on functions mgnfr and split. These two functions require the computation of
the approximate local domain of ordered numerical literals A;\D every time they are
invoked. For knowledge bases containing a large amount of numerical literal data,
this may be expensive. However, the knowledge bases we consider will often contain
fewer data literals than abstract individuals, as we will show in Chapter @ In these
cases, this method performs efficiently given that sets A;LD are restricted in size for
any set of contexts A, and that the functions mgnfr and split are both efficient in that
they have computational complexities which are at most PTIME.

Finally, we include the following rules for downward refining boolean literals B

and string literals S which begin refinement from the top datatype in either domain:

{boolean|=v] | Yo € AP} if N=TP
{string[=v] | Yo e A3} if N=T°

These downward refinement rules simply generate t[= v] facet restrictions to single
out individual values in each domain. While this suffices for boolean values as there
are only two, namely boolean|= true| and boolean|= false|, clearly more complex rules

can be defined over the set of strings, however we do not consider these.

4.5 An Improved Downward Refinement Operator

Throughout the previous section, we constructed the downward refinement operator
p; in a piecewise way to address each of the cases for refinement, namely:

e Atomic and negated atomic concept conjunctions (§4.3.1);

e Role expressions (§4.3.2);

e Disjunctions (§4.3.3);

e Numerical, boolean and string-based concrete domains (§4.4).
The full definition for the operator p; is given in Definition m
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Definition 4.5.1. Given a concept expression C or datatype facet restriction N and a set of

most applicable contexts A, the downward refinement operator p (C) is defined as follows:

0;(C)

{Cu...UCy | Ci<icy € mga(A)
VCi<icj<n : G 2 Cj}
{AlAcarf(A),ACy C,—~3A €arf(A)s.t.

AI:j1 A’ Ca C}U{CHA’CI_lAEEH’f(/_\),

C = A,C overlaps A} U
{CNor.D | V(or.D) €ir(A)st. C <X (Or.D)}
{CiM...NC,NA|A€arf()),
Ch 2 ANVCicic)VA € A: G € arf(A) —
C; overlaps A} U
{C1M...NC,NCr.D | V(Or.D) €ir(A) s.t.
Cn 2 (Or.D)}
{C1M...MCs.EM...MCy |
V(©s.E) € p;(Or.D) s.t.
VCi<j<n ©s.E X Cj A
ncu(CyM...MOs.EM...MCy)}
{Ir.E| E€p; (D)} U{Ts.(D) |s€sh(r)}u
{z"r(D) | #"r.(D) € re(A) An>2A
=3(?"r.(D)) € re(A) s.t. m <nAm > 2}
{Vr.E | E € p;,(D)} U{Vs.(D) | s € shy(r)}
{?"r.D| "r.D € re(A) An>mA
-3(Z°r(D)) €re(A) s.t. m <o <n}U
{#"s.D|s € shy(r)} U{*"r.E| E € p5,(D)}
{S"r.D| S"r.D € re(A) An <mA
-3(S°r(D)) €re(A) s.t. n <o <m}U
{"s.D|s € shy(r)} U{S"r.E | E € v3,(D)}
{C1U...UC_1UDUC 1 U...UCy |
Dep(C)AC 1 <D =Gy, 1<i<n}

ifC=T

ifCearf(A)

z’fC:C1|‘|...|‘|Cn
(n=>2)

fC=Cim... 1M
Or.DMNC; M
..NCy (i< n)
if C=3r.D

if C=Vr.D
ifC= >"r.D
if C= S"r.D

ifC=CiU...UC,
(n >2)
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{N/, | Vw € O, N/, € mgnfr(w,A)} ifN=T%o0orN=TR
{ttFiv...VFV...VFE]|Vie{l,...,n}, ifN,=tFV...VE]
p;(N) = VF! € split(F;,w, ), A)} where n > 1
{boolean[=v] | Vo € AB} ifN=TB
{string[=v] | Vv € A3} ifN=TS

We now make some remarks about the theoretical properties of this refinement op-

erator in terms of redundancy, completeness, and properness.

4.5.1 Properties of p;
Proposition 4.5.2. The downward refinement operator p5 is not complete.

Proof. 1t suffices to show that p; is not complete because refinements of maximum
qualified cardinality restrictions such as <"r.D . S"r.E where D C E are per-
formed via the incomplete upward refinement operator v; (Definition 4.3.6) where
E € vy (D). O

Proposition 4.5.3. The downward refinement operator p5 is redundant.

Proof. 1t suffices to show that p; will generate redundant refinement chains as shown

in Example O

Proposition 4.5.4. The downward refinement operator p5 is not proper.

Proof. 1t suffices to show that p; may introduce disjunctions of the form A LI A for

some concept A, as ALUA = A. ]

Despite the operator p; being not complete, redundant and not proper, each of
these characteristics has been carefully considered in the design of p5 ( to en-
sure that it only avoids the construction of clearly unsatisfiable concept expressions,
or those with an empty closed-world interpretation, for the purposes of efficiency.

As we will present in Chapter @ we are able to integrate p; into learning algo-
rithms which prove to be quite efficient and achieve strong results which outperform
the state-of-the-art with respect to systems like DL-LEARNER which employ the rela-
tively simple yet complete refinement operator pj.

As is the case with the DL-LEARNER system, the inefficiency which results from

the redundancy and improperness of the refinement operators pp and p; can be
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handled not by modifying the refinement operator but by detecting redundancy post-
refinement for any concept, such as by checking for duplicate concepts in a search
beam, or a global set of concepts which a search has considered before, at the cost of

extra memory usage at runtime, which we consider in subsequent chapters.

4.6 Summary

In this chapter, we have presented an analysis of a state-of-the-art refinement operator
for the highly expressive DL known as SROZQ and identified several inefficiencies
which we addressed with the definition of a new operator (. We then presented
novel work around a method of defining the closed-world interpretation of subex-
pressions of any concept expression known as a context-specific interpretation (§4.2).
We then showed how an approximation of a context-specific interpretation can be
computed and then usefully applied to the definition of a new refinement opera-
tor ( which mitigates the issues identified with the state-of-the-art operator in
Section and introduces novel method for extending the downward refinement
operator for learning over concrete domains with a view to supporting classification
and subgroup discovery (§4.4). In Chapter [5, we will describe how we integrate
the refinement operator known as p; into learning algorithms for classification and

subgroup discovery, before analysing their performance in Chapter [f]
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Chapter 5

Supervised Learning in DL

Knowledge Bases

Supervised learning over DL knowledge bases involves searching for concepts which
cover sets of labelled example individuals which meet some quality criteria. As we
saw in Section of Chapter 3, two examples of supervised learning are classifica-
tion and subgroup discovery which will be the main focus of this chapter. Although
the supervised learning methods presented in this chapter are applicable to learning
problems involving two or more example labels, we will often restrict our attention
to binary learning problems where any example e from the set of all examples £ is
labelled with w € {4, —}, either positive (+) or negative (-) for ease of exposition
without loss of generality.

Throughout this chapter, we address the problems of classification and subgroup
discovery with application of the refinement operator p; as developed in Section
of Chapter [ We will show how this operator can be incorporated into generate-
and-test learning algorithms (§3.4.I) and how the auxiliary data structures which
p5 depends on, such as the context graph ( and local domains (, support
the efficient evaluation of concepts with these algorithms. In applying p; to search
concepts, we will also address how the properties of redundancy and improperness
may adversely affect the performance of the learning algorithms we present (§5.3),

and describe methods to mitigate these problems.

5.1 Supervised Learning

Given a set of example data £ where each example e € & is labelled with one of
w € {+, —}, supervised learning generally seeks to find concepts which cover a set of

examples to represent a certain distribution of labels. In the problem of subgroup dis-

111
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covery, concepts are sought, also known as candidates or hypotheses h, which describe
a set of examples with an unusual distribution relative to the set of all examples.
Consider the case where we have 100 examples labelled + and 100 labelled —, giving
us a 50/50 split of examples labelled 4 to —. If a hypothesis concept I covers 90
examples labelled + and 10 examples labelled —, the split becomes 90/10 and may
be considered sufficiently unusual compared to 50/50 such that / is deemed to be
interesting. Interestingness is usually defined in terms of a threshold on a correla-
tion measure function which assesses the proportions of labelled examples which are
deemed significant enough for some hypothesis & to be considered a solution to a
learning problem. For example, in subgroup discovery, weighted relative accuracy
(Definition 3.3.4) is one such function which can be used in this way. Generally, hy-
potheses h found to be interesting are descriptive in that the structure of h reveals
what it is about the examples it covers that results in an unusual distribution in the
cover. Subgroup discovery therefore generalises many data mining tasks which seek
hypotheses which describe interesting clusters or groups of labelled examples. The
very structure of a hypothesis / directly reveals why examples are covered, which
ought to provide insight into the problem being solved. Hypotheses posed as DL
concepts are particularly suited for this task, as they can be composed from domain-
specific human comprehensible terms such as class and property names from an
OWL ontology which describes, for example, terms from medicine, genomics, or

manufacturing.

The problem of classification can be seen as a special case of subgroup discovery
where hypothesis concepts h are sought which cover only those examples labelled
with certain labels to the exclusion of all others, such as when & covers all examples
labelled + and no examples labelled —. In this way, hypotheses sought for solving
classification problems are often intended for use in prediction, as given a previously
unseen example e, we may provide a label for e by checking if it may be an instance
of I in which case it is labelled +, otherwise —. Therefore, in classification, we seek
concepts h which generalise well to unseen examples such that it performs well in

prediction tasks.

We will now describe a generalised search strategy which employs the use of the
refinement operator p; for searching a space of concepts which is appropriate for
both subgroup discovery and the more specialised problem of classification (§5.1.T).
In the definition of our search algorithm, we will analyse various measure functions

used for assessing the performance of concepts and show how they may indicate
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when parts of the search space may be pruned to improve performance (§5.1.1.2).

5.1.1 Learning as Search

In Chapter E} we developed the downward refinement operator p; to control the set
of concepts refined from any concept expression C such that it avoids the produc-
tion of many concepts which are clearly unsatisfiable or redundant, with the aim of
reducing the search space of concepts. While p; may exclude concepts which are
of little value when used to solve learning problems by generate-and-test methods,
the resulting space of concepts which p; structures and operates over may still be
impractically large for knowledge bases containing a large number of concepts and
roles. Therefore, simple methods which enumerate the entire space of concepts such
as Algorithm 2| cannot be used in practice, and we are instead required to bound
the total number of hypotheses under consideration at any stage of the algorithm to

limit memory usage.

Algorithm 3| of Chapter |3 presented what is known as a basic beam search strategy
appropriate for searching through a large space of candidate concept expressions. In
this algorithm, the set of concepts under consideration at any one time is bounded
with a maximum cardinality, and only the candidates deemed to be the best are
maintained at any point in the algorithm. While this approach effectively addresses
the problem of managing a large search space, it results in the learning algorithm
being approximate as solutions which are refinements of candidates which were ex-
cluded from the beam set at any point will not be explored. Beam search methods
rely on the use of so-called heuristic functions to determine which candidates ought
to be maintained in the beam with the expectation that solutions are to be found

amongst their refinements.

Heuristic functions are often defined in terms of the current performance of a
candidate concept h relative to the learning problem being solved, along with other
measures such as the structural complexity of h. For example, in a classification
problem, the accuracy function may be used to assess current performance, while
structural complexity can be measured simply by the number of terms in the expres-
sion as length(h). These functions can be combined into one heuristic utility function
u as per Definition as follows:

u(h, &) =acc(h, &) — B - length(h)
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where length : L — IN maps concept expressions to their length as the number of
terms in the expression i € £, and where € [0,1] is a fixed parameter which
captures the user-defined importance of concept length relative to accuracy, and is
chosen experimentally. By penalising the utility of a concept based on its length, we
are preferring shorter concepts with high accuracy over longer ones, which embodies
the well-known Minimum Description Length (MDL) principle [84], whereby it is antic-
ipated that simpler, shorter hypotheses ought to generalise better than longer ones
over unseen data for the purposes of prediction.

Accuracy gain is another technique which may be used in defining a heuristic
function for use in concept learning which is to incorporate the degree to which
accuracy increased or decreased from some concept hg to one of its refinements h;,
reflecting the intuition that relatively large stepwise gains or losses in accuracy are
indicative of heading closer to or further away from solutions from hy ~» hy. This

can be incorporated into a utility function as follows:
u(hy, &) =acc(hy, &) +a - (acc(hy, ) —acc(hy, E)) — B - length(hy)

The fixed parameter a € [0,1] is similar to f in that it determines the user-defined
importance of accuracy gain (or loss) relative to the accuracy of h. This utility func-
tion is used by the DL-LEARNER system for classification in the CELOE and OCEL
search strategies, except that instead of length(h), the latter employs the length of the
refinement chain T ~» ...~ h instead [58].

Recall that a utility function u induces a ranking over concepts where, for two
concepts C,D and a set of examples &, that u(C,&) < u(D,€) implies that D is
preferred over, or is stronger than, concept C. In a search algorithm which selects
candidate expressions such as C or D to refine towards concepts which are solutions,
the utility function can be used to describe which concepts are the best to refine first
over any others. For example, in a beam search with a beam set B of cardinality n
for which all members have been refined into a set E = {h | Vb € B : h € p(b)},
repopulation of the beam B may be performed by selecting the n-best candidates of
E according to their utility u.

In addition to a utility function, a search algorithm will impose a minimum
threshold T on a measure function to define a boolean quality function Q which
is used to indicate when a hypothesis 1 may be considered a solution to a learning
problem. For example, hypotheses i which can be considered solutions where ac-

curacy is used as the measure function may threshold accuracy where 7 = 0.95 as
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follows:
Q(h, &) = acc(h, &) > 0.95

A search algorithm which assesses the performance of hypotheses based on a mea-
sure function f may also be able to leverage certain properties of f to determine if
refinements of any particular candidate hypothesis I could ever satisfy the quality
function. Such properties of the measure functions are those of anti-monotonicity or
convexity, as we will describe in the next two sections. These properties permit us
to define lower bounds on the coverage of certain sets of labelled examples for any
hypothesis & which indicate if any of the refinements p*(h) could ever be considered
a solution. If they cannot, the space of concepts defined by the set p*(h) may be
effectively pruned from the search space, thus improving efficiency. In the next two

sections, we will analyse these properties against several common measure functions.

5.1.1.1 Anti-Monotonic Quality Criteria

Recall that a boolean quality function Q is anti-monotonic by Definition [3.4.9)if, for any
two concepts C, D where C C D, that if Q(C) succeeds, Q(D) necessarily succeeds.
If the quality function Q is defined in terms of a threshold T on a measure function
f(C,€&) > 7 which fails for any downward refinement E € p*(C), we conclude that
the condition f(h,£) > 7 is anti-monotonic for any concept h.

The relFreq function which computes relative frequency of Definition is an
example of an anti-monotonic measure function which we can use to apply to a
search. Basically, relFreq can be used to ensure that any candidate concept C must

strictly cover a minimum proportion of examples from all examples £ as:
relFreq(C,E) > Tyin

where T,,;;, € [0,1] and represents a minimum threshold on relative frequency, for
example, T, = 0.1 requires that any candidate C must cover at least 10% of all
examples. Clearly, this condition is anti-monotonic as any generalisation D where
C C D will also have relFreq(D,£) > Ty, as D cannot cover any fewer examples
than C. This condition can be used for pruning the search space, as if we find that
relFreq(C,E) < Tyin, then for all concepts E €€ p*(C) we will have relFreq(E,£) <
Timin-

Other measures of quality, such as the accuracy function, are not anti-monotonic,

and therefore, cannot be used to prune away parts of the search space based on
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simply thresholding on their values. Fortunately, we may still define similar condi-
tions under which refinements of any concept may never be considered of sufficient
quality if the measure function has the property of convexity, in which case we may
impose certain minimum bounds on the cover of hypotheses such that we ensure

that their refinements may still contain a candidate of sufficient quality.

5.1.1.2 Convex Quality Criteria

Generally, if a quality function Q is defined over a measure function f which can be
shown to be convex, we may conclude that f is anti-monotonic which will assist us
in understanding when to prune parts of a search space away to improve efficiency.
To define the convexity of a function such as f, we first define the notion of a convex

set, as follows.

Definition 5.1.1. (Convex Set) A set S in some vector space such as R? is convex if, for
any two vectors s1,sy € S and any t € [0,1], then the vectors described by (1 — t)s1 + tsp
must also belong to S. Intuitively, this means that all vectors which lie on the straight line

between any two vectors sy and sy appear in S.

Definition 5.1.2. (Convex, Concave Function) A function f : S — R is convex iff S C
R? is a convex set and Vs1,s3 € S,t € [0,1] = f(ts1 + (1 —t)s2) < tf(s1) + (1 —t)f(s2). If

f is convex, then we say that — f is concave, and vice-versa. [85]

In order to analyse such functions f in terms of the covers of the concepts, we con-
sider the stamp point function sp : £ x S +— Z% which maps concepts C € £ and the
population set of examples £ € S where each example e € £ is labelled with one of d
distinct labels as e.,, where w; € Qand d = |Q] and 1 <i < d as:

sp(C,E) = (Xwys -+ Xewy)

where x,,, = |CZH) N £¥|. The function sp maps the example cover of some concept
expression C to a so-called stamp point (xy,, ..., Xw,) Where each component x,,, rep-
resents the number of examples labelled w; for each label 1 < i < 4 in d-dimensional
coverage space [65, 33]. Measure functions f can then be redefined in terms of func-

tions in coverage space with oy where:

o5 (sp(C,€)) = f(C,€)
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For example, consider the accuracy function as per Definition where () =

{+, —} which is mapped into coverage space as follows:
sp(C,E) = (x,y) where x = TP = |[CT*) N EF|,and y = FP = |[CTH) nE|

where x describes the number of examples labelled + and y describes the number of
examples labelled — in the cover of C. In terms of two-dimensional coverage space,
the accuracy function acc(C,E) where P = TP+ FN = |ET| and N = FP+ TN =
|E~| becomes:

x+ (N—y) x+N-—-y

Gucc (%)) = x+y+(P-x)+(N-y) P+N

Consider the case where any concept C is considered a solution to a learning problem
by imposing a minimum threshold t,,;,, over accuracy as Q(C,&) = acc(C,E) > Tyin-

By rearranging for y, the definition of accuracy in coverage space becomes:
Y<x—Tuin(N+P)+N

By this equation, concept C meets the criteria to be considered a solution given the
numbers x,y of covered examples labelled +, — when this equation is satisfied. In
Figure we plot this as a function in coverage space for various values of minimum
accuracy Ty, which each represent isometric lines passing through all points (x,y)
for a fixed value of 7,,;,. Here, we see that the isometric lines of the accuracy function
are linear, which is the precise condition under which a function may be both convex

and concave.

From Figure we see the isometric lines for the accuracy function plotted for
both T, = 0.75 and T, = 0.95, where those candidate concepts with covers (x, y)
which lie in the area between each respective isometric line and the x-axis represent-

ing solutions which meet or exceed the minimum accuracy Tyiy.

The point at which isometric lines in coverage space cross an axis such as where
y = 0 provides us with lower bounds on the other variables, such as x. In this example,
the isometric line for 7,,;, = 0.75 crosses the x-axis at x = 50 when y = 0, therefore no
candidate with a stamp point (x,y) can ever be a solution where o, ({x,y)) > 0.75
when x < 50. This analysis provides us with conditions with which we may use to
prune candidates and all of their specialisations from a downward-refinement search,

as concept covers (x,y) may only ever be reduced.
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Figure 5.1: A coverage space plot representing the number of positive examples la-
belled + on the x-axis and negative examples labelled — on the y-axis. Two isometric
lines for accuracy threshold values 7, € {0.75,0.95} for a problem with 100 positive
and 100 negative examples are shown, along with the diagonal line at x = y. Also
plotted are the stamp points of two hypotheses, C at (92,20) and C’ at (80, 15).

Given any candidate h with stamp point (x,y) in coverage space, we can also
define upper bounds on the potential future value of any downward refinement of by
inspecting the value of the measure function oy by setting one of the variables of the
stamp point to 0. For example, consider the two candidates C at stamp point (92, 20)
and C’ at point (80,15) from Figure The upper bounds on the potential future
value of accuracy for any number of refinements of C or C’ is found by assuming the
refinements have covers which contain no negative examples, as follows:

o C:04((92,0)) =0.96

o C':04((80,0)) =0.9
With respect to the minimum threshold 7,,;, = 0.95, we find downward refinements
of C can potentially reach a refinement with accuracy 0.96, therefore should be con-
sidered for future refinement. However, as C’ has an upper bound of 0.9, we may
safely prune it from the search as C’' and all of its downward refinements p*(C’) can
never satisfy o,.c > 0.95. The notion of computing an upper bound on the future
potential value of convex measure functions ¢y was formalised by Zimmerman and
De Raedt [111] as follows:

Definition 5.1.3. (Upper Bounds on Convex Measure Functions) The upper bound on
values of a convex measure function oy with respect to a candidate hypothesis h with stamp

point (x,y) is given by the function ub,, as:

ubg, ((x,y)) = max{o¢((x,0)),0¢((0,y)) }
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Upper bounds on the potential future value of any candidate computed with ub,,
permit us to prune candidates from a search based directly on a minimum threshold
Tinin ON OF.

While accuracy is useful for binary classification problems, it is not useful for
subgroup discovery in general which aims to locate hypotheses which cover an un-
usual distribution of examples relative to a population, such as hypotheses which
cover more examples labelled — than labelled +. In these problems, so-called cor-
relation measures are often used to assess the interestingness of a candidate to define
which hypotheses are solutions. Two common correlation measures for assessing the
interestingness of subgroups are the x? statistic, and weighted relative accuracy (WRA),

which have both been shown to be convex functions [65], [111].
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Figure 5.2: Plots of various isometric lines in coverage space for x> on the left, and
weighted relative accuracy (WRA) on the right for a population of 200 examples
labelled + on the x-axis, and 100 examples labelled — on the y-axis.

Figure shows various isometric lines for x> and WRA, which lie either side
of the diagonal x = y from (0,0) to (P, N). Note that the isometric lines for various
threshold values are reflected on either side of the diagonal to capture interestingness
irrespective of the proportion of examples labelled either with + or — relative to the
population, which here is shown where P = 200 and N = 100. Candidates with
coverages (x,y) may be considered solutions when their point in coverage space
does lies outside the space between the two reflected isometric curves [32].

The x? function is often used to evaluate the statistical significance of the cov-
erage of candidates relative to the example population in rule learning systems. In
Figure X? is shown to be thresholded at x*> > 3.841 beyond which a candi-
date cover represents a statistically significant distribution of examples relative to

the population with a probability of more than 95%, and where x> > 10.828, with a
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probability of more than 99.9%.

WRA is a frequently used correlation measure which has been shown to perform
well in rule induction systems such as CN2 [54]. In Figure various isometric
lines are shown for various levels of significance of 35% to 95% relative accuracy.
This function differs from the accuracy function in that it accounts for skewed pro-
portions of examples with different labels, whereas accuracy relies of the distribution
of examples between two labels + and — to be relatively even. Secondly, WRA may
be used to determine the significance of a candidate’s cover relative to a population
of examples whether the cover is composed of examples with labels skewed towards
one of + versus —, whereas accuracy is intended to model the performance of covers
of examples relative to one label only, +.

Another commonly used convex correlation measure used in binary classification
is the Matthews correlation coefficient (MCC) [76] function, and is often used as an
alternative to accuracy when the distribution of example labels is uneven. MCC
is related to x> where |[MCC| = X which, when expressing in terms of x,y in

X +y
two-dimensional coverage space is:

B x(N—y) —y(P—x)
Umcc(<x1y>) - \/pN(x+y)(P+N—x_]/)

By rearranging for y and thresholding on 7, we obtain the function for isometric lines

of MCC in coverage space:

_ N?2Pt? + NP?12 & /NVPt(N + P)V/NP72 + 4Px — 4x2 — 2NP7?x 4+ 2NPx
Y= 2(NPT2 + P2)

MCC evaluates to 1 when the candidate cover (x,y) = (P,0), —1 when (x,y) = (0,N)
and 0 when (x, y) lies on the diagonal between (0,0) and (P, N) representing little to
no difference from the distribution of the example population.

In order to assess the significance of any candidate & with stamp point (x,y)

relative to 0y,c, we may impose a threshold T, on the absolute value as:

’Umcc<<x/ ]/> ) | Z Timin

With this description, we may impose upper bounds on the MCC measure function

}

for any candidate stamp point (x,y) as follows:

xN
\/xPN(P+N—x)

7

— —yP
ubamcc(<x’ y>) = max { ' \/yPN(PJery)
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Figure 5.3: Various isometric lines for thresholded values of the Matthews correlation
coefficient (MCC) in coverage space for a population of 200 examples labelled + on
the x-axis, and 100 examples labelled — on the y-axis.

Example 5.1.4. Consider a binary labelled set of examples € where & = ET UE™ and
where P = |ET| = 200 and N = |E~| = 100, with three candidate concepts C at stamp
point (160,50), D at (150,50) and E at (150,70). When the minimum MCC threshold
Tmin = 0.75 as shown in Figure|5.3|is used, the following upper bounds on . apply:

ubg,. (sp(C,€)) = max{0.632,0.756} = 0.756
ubg,. (sp(D,€E)) = max{0.632,0.707} = 0.707
ubg,. (sp(E,€)) = max{0.780,0.707} = 0.780

Candidate D may be pruned as all of its downward refinements D' € p*(D) will never have

a cover which permits Oy, to exceed the minimum threshold of T,,;,, = 0.75.

Note that the upper bound computed by ub,, for some convex measure func-
tion f given a candidate i over examples £ is optimistic in the sense that it is not
guaranteed that some hypothesis 4’ will exist where i’ € p*(h) and o¢(sp(H',£)) =
ubg, (sp(h,€)). Instead, the upper bound only indicates the possibility of the ex-
istence of some /' which maximises ¢y to the upper bound value for the parent
candidate h. Therefore, given a collection of candidates such as a beam set which is
maintained in a beam search, we may order candidates based on their upper bounds
in order to refine those which may lead to the strongest solutions. In this way, the
upper bound of any candidate may be incorporated as a heuristic into a utility func-

tion upym to indicate the strength of potential solutions in the set of refinements of
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any candidate.

Definition 5.1.5. (Utility Function uop) Given a concept d refined from c from the set
of all concepts L, a set of labelled examples £, a convex measure function oy, the upper
bound function ubg,, the stamp point function sp, the length function to compute the number
of symbols in any concept, and real-valued parameters w, B,y € [0,1], the utility function
uom(d, €) is defined as:

uom(d,€) = |oy(sp(d, €))| + v - ubg, (sp(d, €)) +
w- (|og(sp(d, €))] = log(sp(c, €))[) — B - length(d)

The utility function upps of Definition incorporates the following:

e The current performance of d according to the convex measure function oy
in the range [—1,1] where |o¢| reflect weak solutions at 0 and the strongest
solutions at 1;

e The optimistic upper bound on o7 for d;

e Any stepwise gain in the performance of d relative to its parent concept, c,
according to 0f;

e The complexity of the expression d as the number of symbols it contains.

Note that upy ranges over the set of reals, where larger values correspond to stronger
candidates as per Definition This utility function incorporates aspects of the
OCEL and CELOE heuristics used in the DL-LEARNER system which capture gain
in the measure function and penalise long concepts [58], but also incorporates the
optimistic upper bound ubs, on 0y to capture the potential strength of candidates
amongst the set of refinements. The user-defined parameter y controls the impor-
tance of the optimistic upper bound of future potential of a candidate 4. By incor-
porating this upper bound as a heuristic in the utility function, we boost the utility
of currently low-performing candidates with high future potential, without lowering
the utility of currently high-performing candidates also with high future potential.
Experimentally, we have typically used the settings « = 0.5, = 0.02,y = 0.2.

The use of the optimistic upper bound for candidate selection in a utility func-
tion for a search algorithm has been described before in the cluster-grouping (CG)
algorithm [111]. This algorithm implements a best-first search which orders candi-
dates for downward refinement exclusively on the value of their upper bound ub,,.
The CG algorithm then employs a pruning strategy which eliminates candidates and
their refinements if it can be shown that their upper bound does not exceed a current

minimum threshold T which is initially defined by the user, but then is increased at



§5.1  Supervised Learning 123

runtime to match the weakest solution, if found. In a DL learning setting, concepts
which are solutions may be very sparsely populated amongst the vast set of con-
cepts in £, which we estimate is larger than the hypothesis spaces over which the
CG algorithm is designed to operate over. By ordering on upper bound values only,
we risk exploring large parts of the search space based only on the potential future
performance and may ignore currently high performing candidates which are close
to solutions. Furthermore, we prefer small, simple concepts over longer ones which
are semantically equivalent under a closed-world interpretation such as (Z,U).

In a learning algorithm, once any solution C has been found which exceeds a
minimum threshold 7, for some measure function oy, we may opt to terminate the
search, or continue to look for other concepts C’ which exceed the performance of
the last found solution C. So-called anytime algorithms work in this way, where the
last best solution to the problem is maintained and is potentially improved given
more computation time. If a solution is found with value 0y = T where T > Ty,
and computation is allowed to continue to search for better solutions, the minimum
bound T, may be reset to T which has the effect of permitting the algorithm to prune
more concepts from the search space. For example, consider a search algorithm
which finds a solution with correlation measure value Tj.s;. Then, any subsequent
candidate D under consideration which has an optimistic upper bound t where t <
Thess May be pruned, as none of the specialisations in p*(D) can have a correlation
measure value which exceeds Tj,s;. Similarly, if a learning algorithm is designed to
locate the top-k concepts for some fixed k, the threshold 7, may simply be set to

that of the weakest of the current set of j solutions where 1 < ;j < k.

5.1.2 A Top-k Search Algorithm for Supervised Learning

In Section of Chapter 3] we introduced the beam search Algorithm 3| for search-
ing a space £ of DL concepts by downward refinement. This algorithm traverses
the space of concepts by maintaining a beam set B of maximum cardinality B, to
maintain the search frontier, namely, the set of all candidate concepts to consider for
refinement at any one time. This algorithm proceeds by collecting refinements of
the candidate concepts in B into a temporary expansion set E, before repopulating the
beam set B with at most B, of the best candidates from E, or by selecting candi-
dates from E at random with a probability proportional to their performance relative
to a utility function, a strategy known as stochastic search.

We aim to generalise this capability by permitting more control over the beam
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set B and expansion set E in a way which supports both memory-bounded beam and
best-first search as follows. We introduce a maximum bound on the expansion set E
as Eyux, and maintain it by only permitting the best E,;;x candidates at any one time.
When the algorithm has refined all candidates in the beam B populating the expan-
sion set E, we permit control over how any remaining candidates in E are treated.
In a beam search such as Algorithm 3, any remaining candidates in the expansion
set E are discarded once the beam B is repopulated, as per line {4 of Algorithm
However, if we permit remaining candidates to reside in E, subsequent refinement of
candidates of the beam B into E can be chosen on a best-first basis. This behaviour
allows candidate concepts of varying lengths in the beam at any one time, and are

selected based on the strength of their utility, which is a best-first search approach.

Furthermore, we will permit the search to maintain up to k > 1 of the best so-
lutions found at any point, and limit the time the algorithm may spend searching
for solutions with a maximum computation time t,,,; to support an anytime strategy.
Our search method is shown as Algorithm [7} and is a combination of our modifica-
tions to the beam search of Algorithm [3|and the CG algorithm [111]. Our algorithm
reflects the CG algorithm in that it dynamically increases the minimum bound 7 on
a measure function oy if any solutions are found such that candidates which have
an upper bound ub,, < T may be pruned from the search space, as they can never
be stronger than any of the current solutions. Additionally, any solution s which is
subsumed by some pre-existing solution s’ where s C s’ which share the same stamp
point (x,y) are excluded as they are unlikely to provide any additional information

about the cover.

The main difference between Algorithm[7/land the CG algorithm is that the former
permits bounds on the size of the set of candidates currently under consideration,
as the set of candidates which have upper bounds on ¢y at any one time may be
impractically large to store in memory. This is why the expansion set E is also
limited with maximum size E,;y, and when |E| > E, .y, candidates with the worst
upper bounds are pruned, as per line Note that nodes with the weakest utility
uppm may also be used to prune candidates from E, especially if the utility function

incorporates upper bounds on 0y, as does u,y;.

Algorithm [/|is our general-purpose anytime search algorithm which is applicable
for both supervised classification and subgroup discovery problems, and takes the

following:

e &: A set of binary labelled examples as £ = J,cq Y for Q = {+,—};
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p5: Our downward refinement operator defined against a concept language £;

e k: The maximum number of concepts to find as solutions where k > 1;

e upy: Our real-valued heuristic utility function;

e sp: The stamp point function mapping a concept C to a stamp point (x,y) in
coverage space relative to £ and ();

e 0y A convex measure function defined over coverage space;

e ub: The upper bound function defined over oy;

® Tyin: A minimum threshold on ¢y which signifies when candidates with stamp
points (x,y) are solutions as o¢((x,y)) > Tyin;

® fyax: The maximum time for which the algorithm may execute;

e By The maximum width of an open/beam set B where |B| < B,y of candidates
to refine, so as to bound memory consumption.

e E,qx: The maximum width of an expanded/successor set E where |E| < Ejay, also
to bound memory consumption.

e beam: A boolean variable which, when beam = true, indicates that the search

should use a beam search strategy similar to that of Algorithm 3| which rejects

expanded candidates every time the beam is repopulated. Otherwise when

beam = false, we revert to a best-first search strategy which constantly maintains

at most E,,;, best candidates.

The function REPOPULATEBEAM as used on line 28| of Algorithm [7] regenerates the
beam set B by selecting candidates from E. We describe two different implemen-
tations of this function, the first being Algorithm (8| which simply selects the best
Buax candidates from E to repopulate B, and the second being Algorithm [0 which
performs stochastic selection of the best B, candidates from E with a probability
proportional to candidate utility, and can be used to increase diversity in the search

to avoid getting trapped in local maxima as illustrated in Figure

Algorithm 9] computes the range of scores produced by upp for all candidates
in the expansion set E to normalised all values into the range [0,1] where 0 repre-
sents the best utility and 1 represents the worst, as shown on line With utilities
normalised, the algorithm attributes each candidate with normalised utility n with a
probability p proportional to e~"/T, known as the Gibbs distribution, for some value
of T € [0,1]. Candidates are then chosen at random according to this distribution
until the beam set B is repopulated, or the set E is exhausted. The Gibbs distribution
is commonly used in stochastic search methods as it permits control over the amount

of diversity in the search with the temperature parameter T. For high values of T, the
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Algorithm 7 Time- and Memory-Bounded Top-k Concept Search Algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

function Tor-k-sEaArRcH(E , k, 0f,uoM, P, ub, Tyin, tmax, Bmax, Emax, beam)

S=0 > Solution set
B:={T} > Open/beam set starting with the top concept T
E=0 > Expanded/successor set
T = Tipin > Initialise user-defined minimum quality on o
=t > Start computation timer at f
while (|B| > 0) A (t < tyax) do > Beam not empty and time not exceeded
h:=heB > Arbitrary candidate hypothesis
B:= B\ {h}
C:=p,;(h) > Generate all single-step specialisations of h
E:=EU{cec C|os(sp(c,E)) <TAub(sp(c,€&)) > 1}
S=5U{ceC|o(sp(c,&)) =7} > Add any solutions to S

S=S8\{seS|3I'e€S:s#£sAsCTs Asp(s,&) =sp(s, &)}
while |S| > k do
s € argmin, g of(sp(s,E)) > Remove arbitrary weakest solution
S:=S5\{s}
end while
if |S| = k then
s € argmin, g o7 (sp(s,E))
T = 0¢(sp(s, E)) > Update minimum quality threshold
end if
E:={e € E|ub(sp(e&)) > 1} > Filter on minimum quality threshold
while |E| > E;, do
e € argmin,_. ub(sp(e, £)) > Arbitrary weakest candidate
E:=E\ {e}
end while
if (|B| =0) A (|E| > 0) then
B := REPOPULATEBEAM(E, Byyax, uom, €)
end if
if beam then
E=0Q > Reject remaining candidates (beam search strategy)
end if
t=t+n > Increment timer with n time units for this loop
end while
return S > Return up to k top solutions

36: end function

Gibbs distribution will apportion high probabilities to weak candidates, but as T ap-

proaches 0, the distribution will apportion smaller probabilities to weak candidates.

Therefore, gradually reducing T over the course of a search initially permits a large

number of weak candidates, but over time reduces the probability weak candidates

will be accepted over stronger ones into the beam which has the effect of narrowing
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the search over time. The reduction of the parameter T is user-defined with a decay
parameter D € (0,1), and modifies T from some user-defined initial temperature
To every time the REPOPULATEBEAM function is called. As per Definition Al-
gorithm [9] assumes that the utility function u ranks preferred candidates with real

values which are greater than weak candidates.

1 ; ; T T
N T=10 ——
\ T=0.7 -
N T =05 —x-
U T=03 g -
VxON T=020 -
Ay T=010 -----
06 Lo hn S % T=005 —-»- |
= R “x.
=051y v B “x Ha .
| Vs L} B
Tooalitont T X\*\x\*\\f
e 0 [ o T \x\*
Lobo N o] .. . T 4
03 “.‘ \ .\\ o} . * ** K. “x_
02 N ’ N .\i\ ) Pg ' *** %7
L3 [y w_ By o
0.1 - o, ‘\.\- O.g - N
. 6., g [ o
I B Pl N St Ey g

0
0 010203040506 070809 1

n (normalised candidate utility)

Figure 5.4: A plot of the Gibbs distribution function e 7 for normalised candidate
utility n € [0,1] for various temperature values of T € [0,1]. Note that candidates
with normalised utility closer to 0 are considered stronger, with weaker candidates
having a normalised utility closer to 1.

Algorithm 8 Best-First Beam Repopulation Algorithm
1:. B=Q©®
2: function REPOPULATEBEAM(E, Byux, 1, E)
3: while |B| < Byax AN E # @ do
c € argmax,_ru(c, &) > Arbitrary best candidate

4 ceE
5 E:=E\ {c}

6: B:=BU {C}

7 end while

8 return B

9: end function

5.1.2.1 Search Parallelisation

Learning Algorithm [7] can be easily parallelised. Any candidate /1 which is refined
to a number of new concepts as p; (/) on line [I0l may each be evaluated in parallel.

Evaluation requires the computation of the stamp point for each refinement in i’ €
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Algorithm 9 Stochastic Beam Repopulation Algorithm

. B=0© > Empty beam set
22 T:=Tp > Assign initial temperature
3: function REPOPULATEBEAM(E, B¢, u, E, D)

4: Uu=0o > Set of candidate/utility pairs
5: (Umin, Umax) = (—00,00)

6: forallc € E do

7: u=u(c&)

8: U:=UU{(c,u)}

9: Upin = Min { Uy, u}
10: Umay = Max {Umax, U}
11: end for
12: P=0 > Set of candidate/probability pairs

13: Psum =0
14:  forall (c,u) € U do

15: if Ui = Umayx then

16: n:=20

17: else

18: ni=1— it > Normalise utility into the range [0, 1]
19: end if

20: p=e T > Compute the probability of selecting candidate c
21: Psum = Psum + P > Accumulate the total probability
22: P:=PU{(c,p)}

23: end for

24:  while |B| < Byx NE # @ do > Repopulate the beam set B
25: (¢, p) = sample(P, psum) > (c,p) € P selected with probability p/psum
26: B:=BU{c}

27: end while

28: T=TxD > Decay the temperature for the next invocation
29: return B

30: end function

p; (), which in turn requires the coverage of each 1’ to be computed over the set of
labelled examples &, the process for which will be covered in detail in Section As
we will see, this is an ideal opportunity to perform processing in parallel as coverage
checking may be computationally expensive for knowledge bases containing a large
amount of individual and literal data. Alternatively, multiple parallel processing
threads may be used to select candidates i from a beam set (line for parallel
refinement and evaluation within the main while loop, having the advantage of
performing refinement and evaluation in parallel. This is useful when the refinement

operation itself is expensive, as we will explore in Section of Chapter [p|
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5.2 Coverage Checking

In a supervised learning problem with a number of labelled example sets £ for all
labels w € (), the problem of coverage checking seeks to determine, given a concept
expression C, which examples e from each labelled set of examples e € £¢ lie in the
closed-world interpretation CZ4) for the interpretation (Z,U). Each subset of £¢
covered by CZH) as CZU) N £ provides a way of assessing the quality of C relative
to a set of criteria for learning, such as the utility of C based on measures like accuracy
in a classification task.

In any generate-and-test learning scenario over knowledge bases containing a
large amount of data, the problem of coverage checking is likely to be the most
computationally costly operation. In this section, we will describe a novel method of
coverage checking for assessing any concept C given a context-specific interpretation
J\ which is approximated by J3 as constructed by the instance chase described in
Algorithm [ of Section

Our method of coverage checking is based on the method referred to as Fast In-
stance Checking (FIC) as implemented in the DL-LEARNER system [60]. However,
instead of checking if an individual i is an instance of concept C based on the closed-
world interpretation (Z, ), we make use of the context-specific interpretation J; as
maintained in a context graph G as generated by the instance chase. Algorithm
describes the boolean function INsTANCEOF(i, C, A) which succeeds when i is an in-
stance of C given a set of most applicable contexts A and a context-specific interpre-
tation 7).

In contrast with the FIC method, the instance check Algorithm |10| uses local do-
mains A, for each approximated most applicable context A € A, which were com-
puted as part of the instance chase of Algorithm 4] In this way, the instance check
is able to make use of knowledge captured about individuals chased in each context
to limit the amount of checking performed relative to the full closed world interpre-
tation (Z,U). For example, consider the instance check of individual i in the role
expression Jr.D. Naively, we may compute this check by enumerating all known
r-successors of i and testing if at least one is an instance of D. However, if D is
complex and i has many r-successors, this may be expensive. Instead, relative to the
set of most applicable contexts A for 3r.D and A’ for D, we can test if i is an instance
of 3r.D by first checking if it is an instance of all interpretations (3r.A)7+ for each
A € A where A = [...,3r.(o), A]l. If this test fails for any A, by Corollary we
know that i € (3r.D)7* because (3r.D)7* C (Jr.A)J* holds for all most applicable A,
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Algorithm 10 The boolean instance check function which tests if an individual i is
an instance of concept C given a context-specific interpretation 7, and set of most
applicable contexts A.

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:

24:
25:

26:
27:

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

function iINsTANCEOF(i, C, A)
forall A € A do
ifi ¢ A, then
return false
end if
end for
if C=A or C=-A or C={i} then > If C is a simple concept
return i € CZH)
elseif C=CyM...MC, then
return INSTANCEOFCONJ (7, C1 M... M Cy, A)
elseif C=C;U...UC, then
return INSTANCEO¥DIsy (i, C; U ... LI Cy, A)
else if C = <r.D then
forall A € A where A = [...,<r.(0), A] do
ifi ¢ (Or.A)7» then
return false
end if
end for
switch ¢ do
case 3
return 3(i,j) € r7i s.t. INsTANCEOF(j, D, ')

case V
return V(i,j) € r7% : INsTANCEOF(j, D, ')
case "
return |{j | Vj.(i,j) € r73 : INsTANCEO¥(j, D,A")}| > n
case "
return |{j | Vj.(i,j) € r71 : INsTANCEOEF(j, D,A")}| < n
end if

end function

function INsTANCEOFCONJ(i, C1 M...T1Cy, A)
return A\, INSTANCEOEF(i,Cj, A)
end function

function INsSTANCEOFDI1s)(i, C; LI ... LU Cy, A)
return \/; <<, INSTANCEOF(i, Cj,A)
end function
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because by definition we know that D T A. This check can be seen on line {14{and is
a precursor to performing more instance checking for r-successors in the potentially
complex expression D.

Generally, it is faster to check if an individual 7 is an instance of a simple concept
A or —A than it is to check membership in quantified role expressions, as the former
simply require a single lookup to see if i € A or i € =AZH) which were pre-
computed prior to executing the learning algorithm. The precedence operator < used
in the construction of conjunctive concept expressions ensures that simple concepts
appear before role expressions. Therefore, if an individual fails to be an instance
of some simple concept A in a conjunction, this will be detected before checking
potentially more complex role expressions, permitting the instance check to fail fast
where possible.

Given a set of labelled examples £ = Uyeq £¥ for some Q)] > 2, the cover of

any concept C is computed as the set:
cover(C,E) = {e € & | instance(e,C,A)}

The intersection of this set cover(C, £) with each labelled set of examples £¢ for each

w € Q) gives rise to the stamp point of C as follows:
sp(C, &) = (|cover(C,E)NEY, ..., |cover(C,E) N EY])

for each 1 < i < n where n = |Q)|. As we saw in Section the stamp point of
a concept C relative to labelled examples £ is used to assess the performance of C
relative to a measure function oy in a learning problem.

When the set of individuals and literals reachable from each example individual
in £ in a knowledge base is large, the computation of the cover of any concept may

be an expensive operation, as we will discuss in Section

5.2.1 Computational Complexity of Coverage Checking

The complexity of coverage checking for any concept C € £ under a closed-world
interpretation (Z,U) is different from the complexity of the typical instance check-
ing problem for DLs which assume an open-world interpretation Z. As discussed
in Section of Chapter 3, under an open-world interpretation, instance check-
ing is reducible to satisfiability checking for most DLs, where sound and complete

satisfiability checking can be as computationally expensive as N2ExpTime [47].
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Under a closed-world interpretation, concepts can be thought of as queries over
the fixed model (Z,U) which can be thought of as a database. In this way, the com-
plexity of coverage checking can be analysed as a function of the complexity of the
concept C as the query, and the size of the interpretation (Z,U) as the database.
Central to analysing the complexity of coverage checking is the complexity of the IN-
SsTANCEOF function of Algorithm (10| which closely models Definition of (Z,U)
in computing whether some individual i is an instance of a concept C with optimi-

sations around context-specific local domains.

We will analyse the complexity of the INsTANCEOF function on a case-by-case ba-
sis. Firstly, performing an instance check i € CZ4) where C is a simple concept such
as any atomic A, negated atomic —A, or nominal concept {i} is an O(n) operation
where n = |CZH)|, as these concepts will already have their closed-interpretation

under (Z,U) pre-computed, so the instance check is as complex as set membership.

For concepts which are conjunctions Ao M...M A; or disjunctions Ao L... U A; of
simple conceptsA; for 2 < i < j, the complexity is at most O(j - n) where n is the size

of the largest interpretation |A§I’u)] of any conjunct or disjunct operand A;.

We now consider the complexity of instance checking for quantified role expres-
sions such as ©r.(D). The complexity of instance checking i € (¢r.(D))ZH) is a
function of the maximum possible size of the set of all r-successors for any prede-
cessor i which we will denote b, and the worst-case complexity O(y) of performing
the instance check against concept D. If D is a simple concept, or a conjunction or
disjunction of simple concepts, the complexity of the instance check is then O(b-j-n)

as we potentially check all b of i’s r-successors in D.

Now assume that D in <r.(D) is a quantified role expression <r.(E) where
the instance check in E has complexity O(y). The complexity of checking i €
(or.(¢r.(E)) T is O((b- (b-p)) = O(b? - 1), as at worst, we are required to check
that all r-successors of r-successors of i are in E. For further nestings of quantified
role expressions, the complexity of instance checking is at least O (b - ¢) where b is
the maximum number of any r-successors of any individual, and d is the maximum

depth of nested quantified role expressions.

Finally, we consider expressions which may permit simple concepts and nested
quantified role expressions along with conjunctions and disjunctions, which repre-
sents the full expressivity of concepts which may be generated by refinement opera-
tors such as p5. Assume that the maximum number of r-successors for any role r and

any individual i is b, and that the maximum number of operands in any conjunct or
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disjunct is j. For example, consider Or.(CoM...MC;) where any C; = <©r.(A) for
2 <i < j where A is a simple concept. The complexity of instance checking for such
expressions is O(b -} ;bn) = O?-j-n).

Now assume each operand C; it itself a nested role expression which has, as a
filler, further conjunctions or disjunctions of nested role expressions where the max-
imum depth of any nested role expression is d. At the outermost conjunction or
disjunction with j operands, there are b - j instance checks for each role expression,
and a subsequent b - j for each operand of the conjunction or disjunction in the fillers
of each, until we eventually reach simple concepts or conjunctions or disjunctions
thereof with instance check complexity n. This results in an overall worst-case com-
plexity of O((j-b)? - n) as we check the r-successors of all j operands in conjunctions

or disjunctions as role fillers with a maximum depth of d.

In practice, the cost of computing set membership in the pre-computed closed-
world interpretation is closer to O(1) when implemented with hash tables, so the
dominating factor in this result is essentially the maximum number of r-successors
b for any predecessor individual and role r, the maximum nested role depth 4, and
the maximum number of operands j for any subexpression which is a conjunction or
disjunction. Furthermore, we observe that role depth in concepts is often limited to
small values such as less than 10, but this ultimately depends on the structure of the

examples in the knowledge base.

At most, this places the complexity of closed-world instance checking over a con-
cept C in the class of ExpTime problems. When compared to instance checking by
open-world reasoning, the integration of C into a SROZQ knowledge base for re-
classification to permit instance checking by entailment is a relatively very expensive
operation which is a function of the size of the background knowledge as well as
the ABox, and is an N2ExpTime problem [47]. In practice, we observe that classifi-
cation of certain knowledge bases may take minutes whereas closed-world instance
checking will often take milliseconds over the same knowledge base, and is there-
fore clearly preferable for learning by generate-and-test methods. We analyse this
behaviour in practice in Chapter 6| Section [6.3.5]

When computing the coverage of a concept C relative to a set of example in-
dividuals £, we perform the instance check procedure at most |£| times with the
INSTANCEOF function. As & is of constant size as well as the maximum number
of r-successors b for any role, the computational complexity of coverage checking

remains the same as that of instance checking, namely O((j - b)“ - n). Despite the ex-
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pensive exponential worst-case computational complexity of instance checking, there
are several practical optimisations which can significantly improve the performance.
Firstly, given that quantified role expressions are the most expensive concepts to
check instance membership, it is prudent to perform instance checking in conjunc-
tive and disjunctive expressions against any simple operands first, as it is cheaper to
recognise failure (in the case of conjunctions) or success (in the case of disjunctions)
against such atomic expressions before checking more expensive role expressions. In
the definition of the operator p;, we find that the precedence operator < ensures that
atomic operands always appear before quantified role expressions, which supports
this optimisation. Secondly, note that the implementation of INSTANCEOF as shown
in Algorithm [10] incorporates approximate local domains A, for all most-applicable
domains A for any subexpression. By testing if an individual i is not an instance of
some approximate local domain A, we can be assured that i is also not an instance

(ZU)

of any concept C for which A was most appliable, where C C A,. This approach

therefore permits fast-failure on checking potentially expensive role expressions.

Two other optimisations are the caching of concept covers (§5.2.1.1) and fast-
failure given minimum bounds on concept performance relative to a convex measure
function (§5.2.1.2), which we will now describe.

5.2.1.1 Caching of Concept Covers

In the computation of a stamp point such as (xg, yo) for some concept C over a binary
labelled set of examples £ = €7 U E~, the stamp point (x1,11) of any refinement
D € p*(C) will necessarily have x; < x¢ and y; < yo, as the cover of any refinement

D of C will always be a non-strict subset of the cover of C:
D C C — cover(D, &) C cover(C,E)

because if D C C, then by definition of the closed-world interpretation (Z, (), it must
be the case that DIZH) C C(ZH), Therefore, when computing the stamp point for any
concept D, it suffices to begin computation from the cover of its parent concept C
where C ~», D. Therefore, we may trade the computational cost of the time spent
computing the cover of any concept D over the entire set of examples £ with the
space required to maintain the cover of its parent concept, C. While this may increase
the space used by a learning algorithm, it may be used to reduce the computation

time of coverage checking which is useful when the knowledge base contains a large
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amount of data, and where candidate hypotheses often cover fewer examples than in
&. However, as we observe in Section [6.3.5} if candidates in the search often cover a
significant proportion of examples in £, the difference in the performance of coverage

testing with caching can be negligible at the cost of increased memory usage.

5.2.1.2 Fast-Failure of Instance Checking with Bounded Convex Measures

Another optimisation to coverage checking which does not require additional space
is to leverage the upper bounds on values of a convex measure function o given the
cover of a candidate C. As shown in Algorithm [7] any candidate C which does not
have an upper bound ubgf which exceeds a minimum threshold on quality T, will
be pruned from the search, as it can never lead to a concept with a performance which
exceeds Ty, for of. As shown in Definition m the upper bound function ubgf is
defined as the maximum of either ¢¢((x,0)) or o¢({0,y)), over which the threshold
Tuin is imposed, at least for binary labelled examples. By re-arranging the definition
of o¢ in terms of x for o¢((x,0)) > Tyuin and for y where 0¢((0,y)) > Tyin, We obtain
two inequalities which impose minimum bounds on the values of x and y, which
correspond to the number of labelled examples from each class x = |[CTH) N £+
and y = |CZ¥) N £, as demonstrated in Example

Example 5.2.1. Given a stamp point (x,y), the MCC measure 0y ((x,y)) and upper bound
ubg,.. ({(x,y)) as defined on page we re-arrange to obtain the following two inequalities:

2P(N + P) T2N(N + P)
r*Z 75 yz—
2P+ N 2N + P

These define the minimum number of examples x which a candidate C with stamp point (x,y)
must cover from E or the minimum number of examples y candidate C must cover from €~

for the value of measure oy,cc to meet or exceed T.

Generally, for stamp points (cy, ..., c,) in labelled learning problems where |Q)| = 1,
each variable ¢; where 1 < i < n corresponds to the number of examples in the
cover of some concept which are labelled with w; € ). As shown in Example
we computed the minimum bounds on each variable c; which satisfy an inequality
o¢({c1,...,cn)) > T where f was MCC by re-arranging for each c; to produce ¢; >
®(0y,i,T) where (0,1, T) denotes the right hand side of the re-arrangement of the
inequality for c;.

For a candidate C with stamp point (cy,...,¢,) to be pruned from a search based
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on insufficient upper bounds on the performance of oy, it must be the case that ¢; <
®(0y,i,7) for all 1 < i < n, as all downward refinements D of C where D € p*(C)
with stamp point (c7, ..., c;,) will never satisfy o¢({c],...,c;)) > T.

Algorithm [11] computes a coverage for a concept C as a tuple (I3,...,I,) where
each ; for 1 <i < n is the set of examples which are instances of C labelled w; € Q.
Such tuples can be used to compute the stamp point of C relative to a set of labelled
examples € as (|L1],...,|I.|). However, Algorithm [11] is designed such that if it
can determine over the course of execution that, for each I; where 1 < i < n the
inequality |I;| > ®(cf,i,T) cannot be satisfied, each I; may contain fewer examples
than is actually in the cover of C as it fails fast on the expectation that C will be
pruned from the search as its stamp point will not satisfy the minimum bound T on
the measure oy. Furthermore, Algorithm (11| ensures that, if any I; does satisfy its
related inequality |I;| > ®(oy, 1, T), that each I; in the computed tuple (Iy, ..., I;) will

contain the exact number of examples which are instances of C with label w;.

5.3 Search Efficiency

Methods of supervised learning such as the top-k search of Algorithm |/|are designed
to be efficient by pruning the search space where possible. However, the performance
of such search methods ultimately depends on the behaviour of the refinement op-
erator p; as presented in Section of Chapter 4 which is used to structure and
traverse the space of concepts towards solutions. Recall that the operator p; has the
properties of being redundant and improper, which are both detrimental to the per-
formance of a search algorithm. The property of redundancy means that the search
will potentially re-visit the same concept more than once which is clearly wasteful
of resources. The property of improperness describes how the operator, when re-
fining any concept C, may produce an equivalent concept D where D € p;(C) for
which C = D. Concept equivalence here is defined in terms of the closed-world
interpretation where C = D means CZ#) = D(ZU) a5 the refinement operator en-
sures that the concept expression D is not structurally identical to C. Improperness
can be detrimental to the performance of a search algorithm because the measures
used to assess C and D are based primarily on their coverage that is essentially their
interpretation with respect to a set of examples £. If the operator generates multiple
improper refinements Dy, ...,D, € p;(C) where Vi<;<, Di(I’U) = CZM), methods
such as the search Algorithm [7/| which select the concepts for further refinement us-
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Algorithm 11 The coverage algorithm which computes the vector (I3, ..., I,) as the
basis for a stamp point of a concept C given labelled example sets (£“1,...,E%") for
n > 2 and where each I; C CZH) N £ for 1 < i < n. The vector (|I|,...,|I,|) is the
stamp point of concept C. The boolean variable g = true indicates that the auxiliary
function coveRCHECKAUX should fail fast when constructing sets I;, or whether it
should compute the full sets I; for each 1 < i < n when g = false.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

1
2
3
4
5:
6
7
8
9

. function coveRCHECK(C, A, T, (E“1, ..., E9))

P:=((I;,01,E“),...,(1,,0p,E")) where Vi<i<y : ; =@ and O; =@
q = true > Initially, fail fast if possible
return coviRCHECKAUX(C, A, T, ¢, P)

end function

. function cCOvERCHECKAUX(C, A, T, g, ((I1, 01, E%), ..., (I, Oy, E¥1)))

b= (by,..., by) where Vi<i<, :b; = true
for all w; € Q) where 1 <i<ndo

foralle € £¥\ (; UO;) do > For all remaining examples to test
if INsTANCEOF(e, C, A) then
I :=L;U{e} > Example e lies inside the cover of C
else
O; == 0;U{e} > Example e lies outside the cover of C
end if
if g A\ (L] + (|E9] = |Ii] = |Oi]) < @(0y,i,T)) then
b; == false
break © Fast fail as C will not cover enough examples labelled w;
end if
end for
end for
if g A 3b; € bs.t. b; = true then
q := true > Complete the evaluation of each I;
return coviRCHECKAUX(C, A, T, ¢, P)
end if

return (I;,..., [)

27: end function
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ing a heuristic function that ranks candidates based on their cover cannot effectively
select any concept D; as being better or worse than any other equivalent concept,
and the search may then become unguided. This is primarily a concern when the
search method is memory-bounded, as maintaining a limited sized set of candidates
containing many equivalent concepts will result in the search behaving in a largely
unguided manner where it may not be able to select an appropriate trajectory for
traversing the search space towards solutions using the heuristic. Therefore, it is
prudent to limit improper refinements where possible to permit a search algorithm
to apply any heuristic functions it has to aid in directing the search towards spaces
which might contain solutions. In the next two sections, we will discuss how redun-
dancy (§5.3.1) and improperness (§5.3.2) may be identified and mitigated to improve
the performance of search methods like Algorithm 7| which rely on operators like p;

which have such undesirable properties.

5.3.1 Redundancy in Refinement

Redundancy in the refinement operator p; is characterised by the potential for the
operator to refine two or more different concepts, say, C and D where C # D, to the
same concept, E where E € p3(C) and E € p3(D). Redundancy therefore describes
the situation where multiple different refinement chains which reach E from differ-
ent parts of the search space may occur. For example, consider the following two

refinement chains:
A~ B~ BNnCcC

A~ C~~CNB

where B C = CIM B as conjunction and disjunction are commutative. In terms of
conjunctions, the operator p; is defined in such a way which prevents redundant
refinement chains such as these because it uses a precedence operator < to impose
an order on any concept as the operand of a conjunction where only one of Bl
C or CT1 B would be permitted, such as the latter when C < B, and recognises
when syntactically equivalent concepts such as B B may occur so as to exclude
these. Similarly, the operands of disjunctions are constructed so as to ensure that they
conform to precedence rules according to <, except that disjuncts may be repeated,

as in the following refinement chain:

A~ AUA~ (ANTIrB)UA ~ (AN 3r.B)U(ATVs.C)
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Here, repeated concepts such as A in ALl A are necessary as intermediate steps to
reach disjunctive expressions with different operands as shown. By applying the
precedence operator in all refinements, the operator p; is designed to minimise re-
dundancy which may otherwise occur in the construction of conjunctions and dis-
junctions. However, as we saw in Example the downward operator p; may still

generate redundant refinement chains depending on the axioms in the TBox.

In a learning method such as Algorithm [/} the refinements of any concept C
as p;(C) is maintained as a set which excludes duplicate concepts under syntactic
equality =, therefore any redundant refinements in one application of p; will be elim-
inated. Similarly, the collection of concepts maintained in a beam or expansion set
in a search may also eliminate syntactic duplicates. However, this does not preclude
the possibility of the search selecting a candidate C for refinement which generates
some D, which is evaluated and either pruned or refined to new concepts. Then, if
some other candidate C’ is selected which refines to the same concept D later, it will

be re-evaluated if it does not appear in the size-limited beam or expansion sets.

One strategy for managing redundancy during the entire execution of a learning
method such as Algorithm [7]is to maintain a set of all previously assessed candidate
expressions, even if they no longer form part of the current beam or expansion set.
In this way, redundancy can be effectively managed by recognising if a syntactically
equivalent concept has been evaluated before at any time during execution. However,
if the search space of concepts is very large and the algorithm searches a large portion
of the space, memory limitations may restrict how many concepts can be maintained
for this purpose. If the number of potentially redundant refinement chains is rela-
tively small when compared to the size of the space of all concepts searched by the
operator, redundancy may not significantly affect the overall performance of a learn-
ing algorithm. In this case, we may permit the re-evaluation of any concept without
a noticeable impact on performance. As we will see in Section of Chapter [6]
concepts reachable by redundant refinement chains appear in only a small percent-
age of the time spent executing Algorithm [7] for the several problems we analyse,
leading us to believe that the degree to which the operator p; generates redundant
refinement chains is generally negligible. Therefore, we propose that a strategy that
maintains a record of assessed candidate expressions need not be employed when

using p; as the refinement strategy.
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5.3.2 Improperness in Refinement

In the last chapter, we described how the refinement operator p5 is improper. Im-
properness of refinement can adversely affect the performance of a refinement-based
search such as Algorithm [7] by introducing many equivalent concepts into a limited
size beam or expansion set, which we denote in combination as the search fronter. If
this occurs, the heuristic utility function (Definition used by the algorithm to
select the best candidates for further refinement may not be able to select between the
best concepts if there are many equivalent candidates, and the search may become
unguided. In this case, the search is not able to control the trajectory of the search into

the space of concepts toward solutions.

Another complication which can arise from the situation where many improper
refinements populate the fixed-sized frontier is as follows. Consider a frontier of
fixed-sized n which currently contains candidates D;,...,D;,..., D, where Dy, ...,
D;_; each have utility greater than u, and where D;, ..., D, each have utility less than
u. Also consider the case where solutions exist only in refinements of D;, ..., D,. As
search algorithms like Algorithm [7] are likely to refine the candidates D, ..., D;_;
tirst as they have greater utility, the fixed-sized frontier may be populated with their
refinements to the exclusion of weaker candidates D;, ..., D, and their refinements.
If refinements of the initially stronger candidates Dy,...,D;_1 do not contain any
solutions whereas those weaker D;, ..., D, did, the search will not locate any solu-
tions. This situation is illustrated in Figure and is a well-known shortfall of the
local-search strategy such as that implemented by Algorithm E] with a fixed beam

and expansion set size.

Figure 5.5: Concept expression C refined to p(C) = {Ds,...,D;,..., Dy} for1 <i<mn
showing solution S where S € p*(D;). If concepts D;,...,D, are pruned from a
memory-bounded search because concepts Dy, ..., D;_; are preferred according to a
utility function, a learning method such as Algorithm [7] will not find solution S.
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The situation illustrated by Figure 5.5/ can occur when refining concepts involving
disjunction, such as A ~ A LI A. As we saw in the previous section, such improper
downward refinement steps may be necessary if they act as an intermediate bridge to
reach more specific non-equivalent disjunctive concepts which are solutions. Clearly,
the utility of such improper steps remains unchanged, however other refinements
such as A ~» B or A ~ AT C may produce concepts of higher utility, but where

further refinements may not lead to solutions.

One approach to addressing improperness in refinement which has been dis-
cussed in the analysis of pp [58] and which also applies to p; is to simply permit
the repeated application of an improper downward refinement operator p under
the assumption that proper refinements of predecessor concepts will eventually be
reached. This strategy suggests that if a downward refinement operator p is im-
proper, we may perform a finite number of refinements of some concept expression

Co . Cp ~ 2 Cn where Cyp = C; for 1 < i < n until we reach a proper

p e
refinement where C,, C Cp.

The difficulty with this approach is that the number of improper refinements
generated by simply permitting the repeated application of the operator p may out-
number any proper refinements, and end up dominating a limited-size frontier such
that learning becomes unguided, or alternatively, such improper refinements may be
pruned from a search in preference for higher-performing proper refinements, such
as illustrated in Figure

Without modifying the behaviour of the refinement operator itself, this problem
could be mitigated by increasing the size of the frontier in a memory-bounded search
to accommodate for improper refinements until they can be expanded to proper ones,
at which time the heuristic utility function can again determine in which direction
to drive the search. However, when the concept space is vast, this is not a practical
solution. Instead, we aim to analyse the behaviour of the refinement operator relative
to certain concept expressions to identify when improper refinement steps can be
recognised. Once we identify such improper refinement steps, we will describe how
they can be limited in a way which does not affect the ability of the search to reach

solutions.

For example, consider the case where subexpression S; is being refined in the

concept T1 U S; where S; T Tj. In this case, downward refinement may permit the
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following refinement chain:
T, LSy g T, US, Mg e T, US, ~p T UL

Ultimately, refinement of the subexpressions Sy, ...,S, will never alter the closed-
world interpretation of the disjunction T; U S; for 1 < i < n, which is always equiva-
lent to T;. Note that the space of concepts between S; and L may be vast, so permit-
ting the refinement operator p to produce such refinements is potentially detrimental
to a memory-bounded search algorithm. We describe such refinements as being in-
effectual, as each improper refinement results in another improper refinement, and

where the quality of each cannot be assessed by the learning algorithm.

Definition 5.3.1. (Ineffectual Downward Refinement) We denote any improper down-
ward refinement step C ~» D where C = D as being ineffectual if the step modifies Sy
where Sy € subex(C) in the context(s) denoted by A to Sy where Sy € subex (D), where each

subexpression was an operand of a conjunction or disjunction T as follows:

Tyu...uT, U8~ TiU...uT,USy, whereS, TS CTiU...UT,, or
T1|_|...|_|Tn|_|51~‘->T1I—|...[—|Tn|_|52 whereSlgSQQTll_l...l_lTn

Informally, such single-step refinements are denoted as being ineffectual as they do not pro-
duce a proper downward specialisation and were unguided in the sense they cannot be assessed

based on their cover. These two cases are illustrated in Figure

‘
T1 .NT, |_|51

Figure 5.6: Illustration of the set-based interpretation of various concepts along with
an ineffectual refinement step, S; ~» Sy, as per Definition In each case, the
refinement step S; ~~ S results in an improperly refined concept relative to a closed-
world interpretation 5.

Generally, we aim to reduce the number of unguided refinements performed

by a learning algorithm to improve its chances of making informed decisions about
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which concepts to maintain in the search frontier. Our strategy to limit the number of
ineffectual refinements is to perform what we call subexpression suspension. Basically,
if it can be recognised that any operand T; of a disjunction Ty U...U T, for 1 <
i < nis subsumed by T; U T, U T;y1 U Ty, then we suspend the refinement of T;
and instead permit refinement of all other subsuming operands until T; is no longer
subsumed. Similarly, if it can be recognised that any operand T; of a conjunction T7 M
...MNT, subsumes T1 M T;_1 M T;4+q1 1Ty, we may suspend the refinement of all other
operands until T; is refined to an expression which no longer subsumes the conjunct
of the other operands. This method attempts to force the operands of disjunctions to
cover overlapping or disjoint sets of data, and the operands of conjunctions to cover
overlapping sets of data. In this way, refinements of any operand of a disjunction or
conjunction which are subexpressions of some candidate expression C is expected to

generate a proper refinement of C in fewer refinement steps.

Given two concept expressions T; and T; which are operands of a disjunction or
conjunction, testing whether T; T T; either requires checking if K |= T; C T; via
logical reasoning under the open-world interpretation Z or directly via the closed-
world interpretation (Z,U) as Ti(I’u) - Tj(z,u)‘ Under Z, the complexity of checking
a subsumption relationship T; C T; between two concept expressions previously un-
seen by the knowledge base requires re-classification of the TBox, which may be
computationally expensive for highly expressive DLs as discussed in Section
of Chapter 3| Instead, we can leverage the closed-world interpretation (Z,U) which
was pre-computed prior to learning in order to check T; £ T; via the coverage of
each T; and T;. For every candidate C under consideration which contains a num-
ber of subexpressions which are conjunctions or disjunctions, a naive method for
computing the subsumption relationship between any two operands is to indepen-
dently compute the cover of each based on the set of individuals in the knowledge
base and then test if Ti(I’u) C Tj(I’u) or Tj(I’u) C Tl.(I’u) . However, this is potentially
computationally expensive if the set of individuals in A is large. Instead, we
propose to modify the INSTANCEOF procedure of Algorithm [10]which tests member-
ship of individuals in conjunctions or disjunctions with the INsSTANCEOFCONJ and

INSTANCEOEFDIs] auxiliary functions.

Consider a candidate concept C in a learning method such as Algorithm[7] Utility
functions such as upm(C, £) which are used to assess the performance of C do so
relative to the cover of C over the set of labelled examples £ with a procedure such
as Algorithm [1T} which in turn uses Algorithm [10]to check if example instances e € £
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belong in the cover of C as e € CZH). If the candidate C contained any conjunction or
disjunction as a subexpression at the exact context A, then during the coverage check
process, we aim to record for each operand T of the conjunction or disjunction in
context A the set of individuals which were assessed as being an instance of T as the
partial cover denoted (1) relative to a context-specific closed-world interpretation
Jr, where I(1,) C TJx. Note that the instance check Algorithm [10| relies on two
auxiliary functions for testing instance membership in conjunctions and disjunctions
with the functions INsSTANCEOFCONJ and INSTANCEOEFD1s). Here, we will modify
these functions to record the sets (1, y) for every conjunct or disjunct operand T;
over the course of an execution of the covERCHECK function over C. Once complete,
subsumption checking between the operands T;, T; of any conjunction or disjunction
at context A in C can then be inferred by testing whether T; T T if I(1, 5) C Iz p)-
Note that this method is approximate, as the subsumption test relies on the subset S
of individuals selected for instance checks against conjunctions or disjunctions which
will be a subset of all individuals in the context-specific interpretation of any operand
T;as S C Ti‘yA. Nevertheless, if a subsumption relationship exists between any two
operands in a conjunction or disjunction, this will still be apparent relative to the sets
Iz, 1) which are a subset of S. Algorithm [12 presents modifications to the instance

check functions to permit the construction of sets I, »).

Once a coverage check is computed for some concept C via the covERCHECK
function of Algorithm [T1]which makes use of the INsSTANCEOF function and auxiliary
functions of Algorithm a number of sets (1, ) are generated for each conjunct
or disjunct operand with subexpression context A in C. Once computed, these sets
may be analysed to infer approximate subsumption relationships between operands
of each conjunction or disjunction for the purposes of suspension. Note that we only
intend to suspect quantified role expressions <r.(D), as these are the only kind of ex-
pressions which can be refined further. To this end, we only compute subsumption
for operands which are role expressions as follows. Given an exact subexpression
context A which identifies a disjunction T; LI ... U T, in a concept C, the set of sub-

sumed role expression operands S, |, are computed as follows:

Sau =A{Ti | VicicaTi : Ty = Or.D A Ig 0 € | - It}
Vi

for any role name r, concept D and quantifier ¢. Similarly, when A identifies a

conjunction T1 M. ..M T, in a concept C, the set of subsuming role expression operands
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Algorithm 12 Alternate implementations of the instance check functions for con-
junction and disjunctions to support subexpression suspension for limiting ineffectual
refinements.

function INsTANCEOFCONJ(a,C1 M...11Cy, A)

=

2: return INSTANCEOFCHECK(a, 1, {C; | 1 < i < n},A)

3: end function

4.

5: function INsTANCEOFD1s)(i, C; Ll ... LU Cy, A)

6: return INSTANCEOFCHECK (4, LI, {C; | 1 < i < n},A)

7: end function

8:

9: function INsTANCEOFCHECK(a, con, {Cy,...,Cy},A)

10: =0

11: forall C; € {Cy,...,C,} do

12: if INsTANCEO¥(a, C;, A) then

13: Lic,p) = Lic, 0 Uial > Where A is the exact subex context of C;
14: I:=1U{C;}

15: end if

16: end for

17: switch con do

18: case [

19: return |[| = n > a an instance of all n conjunct operands
20: case LI
21: return |I| > 0 > a an instance of at least one disjunct operand

22: end function
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S are computed as follows:

San =A{Ti | VicicaTi : Ti = Or.D A Ig ) 2 | - Iz}t

Vi
Once computed for each exact subexpression context A, the sets S, |, or S, n contain
the operands which may be temporarily suspended until the conditions of being sub-
sumed no longer hold after future refinements of all other non-suspended operands.
If either set S, |, or Sy - contains all operands of their respective disjunction or con-
junction subexpressions, then one operand is arbitrarily removed to permit the re-
finement operator to specialise the expression in some way, unless no refinements
were generated on the operand in a previous application of p;. This requires us to be
able to label any subexpression T with context A of a candidate concept C to indicate
whether:

1. p;\(T) = @: No refinements are possible, so we label T at A in C as T.
2. T is suspended in C at A because it appeared in a set S)  or S) n: No refinements

should be performed, so we label T at A in C as T.

We then modify the behaviour of the refinement operator p; such that it inspects the

label of any subexpression under consideration for refinement such that:

1. p;\(I) = : No refinements are attempted because a previous attempt pro-
duced no refinements.
2. p Z(T) = @: No refinements are attempted because T is temporarily suspended
in C.
Before the coverage check is performed for any candidate C which computes the
subsumption relationships between operands of conjunctive and disjunctive subex-
pressions of C, all suspension labels T are cleared so that new labels may be applied

after the previous refinement.

While the suspension method we have described will not eliminate improper re-
finements, it modifies the behaviour of p; to reduce ineffectual refinements while
not preventing the search from being able to reach any concept which would oth-
erwise be reachable with p; without using the suspension method. As discussed in
Section of Chapter [6| we have tested the use of the suspension method across
several learning problems where we have found that the method significantly re-
duces the number of improper refinements overall while still permitting the search
to locate high quality results as expected. Furthermore, subjective analysis of the

concepts produced as solutions to the problems tested with the suspension method
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appear to contain fewer terms without a reduction in quality compared to those pro-
duced without suspension, suggesting that the method produces more readable and

compact concepts overall.

5.4 Summary

In this chapter, we have explored the topic of supervised learning in DL knowledge
bases, particularly around the problems of classification and subgroup discovery
(§5.1). We analysed the basic beam search strategy and described the use of heuristics
which guide beam search methods, along with an analysis of the properties of vari-
ous measure functions as used by heuristic functions (§5.1.1). We then presented our
novel search algorithm which leverages existing work on the properties of measure
functions in an improved memory-bounded beam search (§5.1.2). We then presented
our novel method of efficient coverage checking which utilises the context graph as
introduced in the previous chapter (. Finally, we discussed various inefficien-
cies of our search method based on limitations of our refinement operator p; and
presented novel methods to mitigate these problems (§5.3). In the next chapter, we
describe our implementation OWL-MINER and evaluate its performance over several

well-known benchmark problems.



148 Supervised Learning in DL Knowledge Bases




Chapter 6

Implementation and Evaluation

In this chapter, we describe the OWL-MINER system which is our software imple-
mentation of the various methods presented in this thesis (§6.1). We then present
an evaluation of the OWL-MINER system against particular well-known benchmark
problems using either classification or subgroup discovery (§6.2). We then analyse
the performance of certain novel methods which the OWL-MINER system imple-
ments (§6.3), including the construction of the context graph and its use in refinement
(§6.3.1}[6.3.2) to the performance of the instance check and coverage computation pro-
cedures (§6.3.5). We then remark on the effect of parallelisation on the search (§6.3.6).
Overall, we find that the OWL-MINER system achieves strong results in terms of the
quality of solutions found for classification and subgroup discovery and generally
outperforms similar systems such as DL-LEARNER and various ILP systems which

are designed to solve similar problems.

6.1 Implementation: OWL-MINER

We have developed a new DL-learning system called OWL-MINER for classification
and subgroup discovery which implements the methods introduced in this thesis.
The OWL-MINER system has been developed in Java 8 in an extensible way to sup-
port new refinement operators, convex measure functions and heuristic utility func-
tions. The OWL-MINER system is a fresh implementation of a DL-learner and is
distinct from the open-source DL-LEARNER software!. This is necessary as the OWL-
MINER implementation relies on methods which are significantly different from DL-
LEARNER. The main differences are that OWL-MINER constructs a context graph (see
Definition with the instance chase of Algorithm 4] and implements refinement
operators such as p; (see Definition to traverse the context graph and to con-

I'DL-LEARNER is available from: http://dl-learner.org/
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struct most applicable contexts A for every subexpression of a concept being refined
in order to assess suitable refinement options. The coverage computation by Algo-
rithm [11] and instance check by Algorithm (10| are also different in that they rely on
analyses of convex measure functions for fast-failure, and are also used to determine
hypothesis subexpression suspension options (§5.3.2) for limiting the production and
evaluation of poor candidate hypotheses. Furthermore, the generalised top-k concept
search method of Algorithm [7|is novel and relies on a large amount of thread-safe
code to support parallel execution. While these methods are general in nature and
could be integrated into the open-source DL-LEARNER project, we have left this task
to future work. The OWL-MINER system relies on several third-party libraries, in-
cluding the following:
e Pellet [92] or HermiT [91] for open-world DL reasoning;

The OWL-API library [41]];

JGraphT (http://jgrapht.org) for creating, manipulating and querying graph

structures;

RabbitMQ (https://www.rabbitmq.com/) for accepting learning tasks and pub-
lishing results for integration with the X-PLORER system (§7.4);

Various Apache Commons libraries, including:
— Math (http://commons.apache.org/proper /commons-math /);
- Lang (http://commons.apache.org/proper/commons-lang/);
— CLI http://commons.apache.org/proper/commons-cli/);

- Collections http://commons.apache.org/proper /commons-collections/).

OWL-MINER is designed to support two modes of operation: batch, and online. Batch
mode requires a single configuration file that references an OWL file containing an
ontology and individual examples, and outputs an OWL file containing hypothe-
sis classes which are solutions to a particular learning problem along with various
statistics for each hypothesis relative to the chosen measure function. Online mode
is similar to batch mode in that requires a single configuration file that references
an OWL file containing an ontology and individual examples, but then listens for
requests to perform certain learning tasks on a message channel. Once received,
OWL-MINER will then process a learning task specification and will output the re-
sult as a JSON file on the return channel for consumption by the requesting agent.

In either mode, the flow of major steps in these processes is illustrated in Figure
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Figure 6.1: The overall OWL-MINER system process flow.

The OWL-MINER process flow of as depicted in Figure [6.1| can be described as fol-

lows:

e Load OWL File. An OWL file which contains an ontology as a set of classes,
properties, class inclusion axioms and data assertions is loaded. This file de-
scribes the DL knowledge base K and contains the axioms of the TBox and
ABox which are used in the system.

e Classify KB. Initially, a DL-reasoner such as Pellet [92] is used to determine all
known individuals for each named concept (atomic OWL class) and role (OWL
object and datatype property) using open-world reasoning. From this set of all
entailed assertions, the fixed closed-world IC interpretation (Definition
of every atomic concept and role is computed, and the weak UNA is adopted
(Definition [3.5.3). This step produces the fixed closed-world model over which
DL-learning will proceed.

¢ Build Context Graph. Given a set of example individuals labelled within the
input ontology, the context graph is constructed (§4.2.2} Definition with
the instance chase by Algorithm The context graph captures the various
ways the examples and the associated individuals which define each can be
described by various atomic concepts, their negations, and quantified roles.

e Classify Local TBoxes. Once the context graph is constructed, so-called lo-
cal domains (§4.2} Definition which were attributed throughout the con-
text graph are used to define context-specific interpretations (§4.2.1, Defini-
tion [.2.8). These are then used to deduce axiomatic knowledge about the
relationship of various concept expressions in each context.

e Prune Context Graph. After the computation of local axioms for each con-
text, portions of the context graph may be found to be redundant or irrelevant
(§4.2.3) and are pruned in preparation for learning.

e Start Learning Process. The learning process runs Algorithm [7| until a set of
solution concepts are found. As part of this process, a refinement operator such
as p; is used to traverse the space of concepts constrained by the context graph.

e Output OWL Classes. If any solutions are found in the previous step, they are
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converted from DL concepts to OWL class expressions and are associated with
each of the individuals they describe, along with annotations describing their

performance in terms of the selected measure function (e.g. accuracy, )(2, etc.).

The OWL-MINER system is configurable to permit users to impose particular declar-
ative biases which control various aspects of how the system will behave at runtime,
including language bias to control the expressivity of the hypothesis language as fol-
lows:
e Limits on overall expression length or the maximum depth of any nested role
expressions;
e The use or exclusion of any concept or role names;
e The use of disjunction, and if permitted, the maximum number of operands in
any disjunction;
e The maximum number of occurrences of a role name appearing in any quanti-
tied role expression as operands to a conjunction;
e Use of any role quantifiers in addition to 3, namely any of: V, =", <;
e Minimum and maximum cardinality of any qualified cardinality restrictions
over particular role names globally;
e Use of the negation symbol against any atomic concept names.
The user is then able to describe the type of problem being solved as follows:
e Whether the problem is a classification or subgroup discovery problem, along
with the convex measure function;
e The set of examples and their corresponding labels.
Once the type of problem is defined, search bias can be controlled as follows:
e Whether to use a best-first or stochastic beam search method, along with a limit
on beam or expansion set size;
e Values for use in a heuristic utility function, such as «, B,y on uops;
e The maximum number of seconds to execute the search algorithm;
Lastly, the validation bias is controlled by defining the stopping criterion with:
¢ A minimum threshold on the convex measure function for recognising solu-
tions and optimistic upper bounds;
e Whether the search algorithm should terminate as soon as k solutions have been
found, or continue processing for the maximum specified time in an attempt to

improve a top-k list of solutions.

Various other system-specific parameters can be controlled, including the maximum
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Java Virtual Machine (JVM) memory limits and the maximum number of threads to
use in refining and evaluating concepts in parallel in the instance chase and search
algorithms. OWL-MINER also supports the automated execution of k-fold stratified
cross-validation where k > 1 for use in assessing the performance of the concepts it

generates as solutions.

The OWL-MINER system is open-source, and is available from GitHub at:

https:/ /github.com/owlminer/owl-miner.

6.2 Evaluation over Supervised Learning Problems

In this section, we describe the application of OWL-MINER to several well-known
problems in classification and subgroup discovery which involve structured data. We
compare the performance of OWL-MINER in terms of both quality of solutions found
and system performance with DL-LEARNER, a state-of-the-art DL learning system, as

well as reported results in ILP for the various problems.

Each problem described in this section was executed on a Dell PowerEdge® R820
with four Intel® Xeon® E5-4640 CPUs and 750Gb RAM. However, each problem
that was run on this machine by OWL-MINER version 1.0.0 or DL-LEARNER version
1.2 was performed within a Java 8 JVM configured to use at most 16Gb heap space

with at most one CPU thread, unless otherwise specified.

6.2.1 Michalski Trains

The Michalski Trains is a widely used dataset for testing learning systems which
operate over structured data [64]. This dataset consists of only ten examples of trains
and their features, such as aspects of their cargo, and are divided into two labels
(eastbound and westbound), as depicted in Figure

The OWL ontology describing trains consists of features such as the cars of each
train, the shape of each car, the loads of each car, and the shape of each load, along
with numerical counts of wheels per train and car, and load per car. Using the
full expressivity of a DL hypothesis language, OWL-MINER was applied to classify
both eastbound and westbound trains separately, which took a total of less than 1

second each to locate many different concepts of 100% accuracy. Some of the shortest
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Figure 6.2: Michalski Trains. Trains numbered 1-5 are classified as belonging to the
class ‘eastbound’, and those numbered 6-10 are labelled "westbound’.
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concepts describing eastbound and westbound trains were as follows:

Label | # | Expression

Train M 3hasCar.(Short M Closed)

East | 2 | (Train M VhasCar.(Short)) LI

(Train 11 23 hasCar.(Car 1 3.hasShape.(Load)))

3 | (Train 1 S2hasCar.(Car)) U (Train 1 3hasCar.(Jagged))
(Train 11 <'hasCar.(Short)) U (Train M 3hasCar.(Jagged))

West

These concepts can be read as: eastbound trains are those which:

1. have at least one car which is short and closed;

2. only have short cars, or have at least three cars with the shape of a load,

where Load = {circle, rectangle, hexagon, triangle} in the background ontology, and

where westbound trains are those which:

3. have at most two cars, or at least one car with a jagged roof;

4. have at most one short car, or at least one car with a jagged roof.

The OWL-MINER system and the methods it implements have been designed to
tackle learning problems which consist of a large amount of background knowledge
and example data and which require a complex hypothesis language. While the
Michalski Trains dataset is small, containing only a few concepts, roles and exam-
ples, it is nevertheless worthwhile demonstrating that OWL-MINER achieves results

which are expected for this well-known problem.
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6.2.2 Poker

The Poker dataset captures a structured representation of various five-card hands
which are labelled with their corresponding poker hand type, such as nothing, straight,
pair, flush, etc. [15]. The dataset presents a classification problem where a learning

system must infer the definition of each of the poker hands to the exclusion of others.

This problem is interesting because it has proven to be very difficult for many
learning systems, primarily because of the scale of the problem in the number of
examples in the dataset, but also because it requires learned theories to be expressive
in order to describe poker hands with high accuracy. The original dataset consists
of a large number of examples of five-card poker hands, where each example is

described only with the rank and suit of each card, for example:

AM K& Qb & 108 (royal flush) 30405006070 (straight flush)
7070 7% 793¢ (four of a kind) QM O& Q¥ 94 99  (full house)
J& 10 S 3 2 (flush) 6¥ 56 49 39 24 (straight)

56 5& 56 K¢ 74 (three of a kind) 49 44 K& K¥ 34  (two pair)

9¥ 9 104 44 24  (one pair) K® Q& 6 74 3¢  (nothing)

A translation of a portion of the poker dataset to an OWL ontology is distributed
with the DL-LEARNER system. In this ontology, background knowledge has been
added to aid in classification. Specifically, the roles sameSuit, sameRank, nextRank are
used to assert whether cards within an individual hand have the same suit (e.g., 4
sameSuit 6M), the same rank (e.g., A® sameRank Ad), or the next rank (e.g., 104
nextRank |9).

The poker dataset is divided into a training set consisting of 25,010 examples
across all hand types representing 0.00008% of all 311,875,200 possible hands, and
a test set consisting of one million examples. In testing OWL-MINER, we have sam-
pled the training dataset alone and have created nine classification problems with
4,000 examples sampled across all classes consisting of a total of 22,307 individuals
overall. Each of these nine problems treats examples of one known poker hand as
the set of positive examples, with the remaining set of examples as negatives which
encompasses examples of all other hands including those labelled with ‘nothing’. In
this way, we require that hypotheses are generated which correctly identify individ-
ual poker hands to the exclusion of all others, a classification approach in multi-class

classification known as one-versus-all. We have added this data into a new ontology
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which incorporates concepts for describing each rank and suit, as well as roles for
describing the cards of a hand, and rank and suit of a card, and the aforementioned
three roles sameSuit, sameRank and nextRank to capture relationships between cards
within each hand, as was incorporated into the poker OWL ontology distributed
with the DL-LEARNER system. We ran OWL-MINER over this new dataset for each
of the nine hand types, and for each, a concept with 100% accuracy was located in
under 20 minutes of computation time as summarised in Table In comparison,
DL-LEARNER was also able to produce 100% accurate concepts for six of the nine
hand types over the same data set, but failed to reach 100% for three classes within

60 minutes of computation time as shown in Table

Hand Concept Acc (%)
One pair | Hand 1 #?hasCard.(Card N JsameRank.(Card)) 100.00
S2hasCard.(Card N JsameRank.(Card))
Two pair | Hand 1 **hasCard.(Card N JsameRank.(Card) N 100.00
SlsameRank.(Card)) 1 S*hasCard.(Card 1
JsameRank.(Card) 1 S'sameRank.(Card))
Three of | Hand M Z3hasCard.(Card 1 3.sameRank.(Card) )" 100.00
a kind S3hasCard.(Card 1 3.sameRank.(Card))
Straight | Hand M 3hasCard.(Card N <3sameSuit.(Card) I 100.00
dnextRank.(Card M 3nextRank.(Card N
dnextRank.(Card M InextRank.(Card)))))

Flush Hand 1 #*hasCard.(Card 1 >*sameSuit.(Card 100.00
S3sameSuit.(Card) N InextRank.(Card)))

Full Hand M #*hasCard.(Card N JsameRank.(Card)) 1| 100.00

house <2 hasCard.(Card 1 S'sameRank.(Card))

Four of | Hand M 3hasCard.(Card 1 Z3sameRank.(Card)) 100.00

a kind

Straight | Hand 1 3hasCard.(Card 11 *sameSuit.(Card 100.00

flush InextRank.(Card M FhasRank.(—Ace))))

Royal Hand 1M 3hasCard.(Card M ShasRank.(Ace) M 100.00

flush >4sameSuit.(Card M InextRank.(Card)))

Table 6.1: Best concepts generated by OWL-MINER for each of the poker hand types
for a maximum computation time of 20 minutes.
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Hand Concept Acc (%)
One pair | JhasCard.(IsameRank.( S*nextRank.(Thing)) N 87.52
SlsameRank.(Thing))
Two pair | >2hasCard.(3hasSuit.(—Spades) I 85.34
JsameRank.( S'sameRank.(Thing)) M
SZnextRank.(Thing))
Three of | *2hasCard.( Z2sameRank.( <'sameRank.( 100.00
a kind JdsameRank.(IsameSuit.(IsameRank.(Thing))))))
Straight | 3hasCard.(3InextRank.(3nextRank.(InextRank.( 100.00
InextRank.(FhasRank.(—Four M —Three M
—=Two)) M ( S3sameSuit.(Thing))))))
Flush JhasCard.(InextRank.(InextRank.(InextRank.( 99.51
JsameSuit.(3hasRank.(Four U King)) M
(Z*sameSuit.(IhasRank.(—Ten 1 —Three)))))))
Full JhasCard.( #2sameRank.(3IsameRank.(IsameSuit.( 100.00
house JdsameRank.(Thing)))))
Four of | JhasCard.( Z3sameRank.(Thing)) 100.00
a kind
Straight | 3hasCard.(3nextRank.(InextRank.(3InextRank.( 100.00
flush >4sameSuit.(InextRank.(3hasRank.(—Ace)))))))
Royal ThasCard.(InextRank.(3InextRank.(InextRank.( 100.00
flush JnextRank.( Z*sameSuit.(IsameSuit.(
JhasRank.(Ace))))))))

Table 6.2: Best concepts generated by DL-LEARNER with the OCEL search strategy
for each of the poker hand types for a maximum computation time of 60 minutes.
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6.2.3 Mutagenesis

Mutagenesis is a well-known benchmark problem in machine learning [24]. A variety
of machine learning techniques have been applied to the mutagenesis dataset to
construct classification models, from ILP to kernel-based methods [61]], however the
application of DL learning systems to the problem has not been described before. The
mutagenesis dataset contains examples of various chemical compounds and their
characteristics, such as the atomic structure including functional groups, and various
real-valued measures such as a water/octanol partition coefficient, log P. The so-
called ‘regression friendly” dataset contains 188 example compounds, 125 of which
are labelled positive for mutagenicity, and the remaining 63 are labelled negative.

Figure shows a sample of three compounds which appear in the mutagenesis

dataset.
NO» O
/@NHZ O:N \@%:0 osz
ON Br N N
2-bromo-4,6-dinitroaniline 5-nitroisatin 6-nitroquinoline

Figure 6.3: Various small molecules from the mutagenesis dataset.

Originally, the mutagenesis dataset was represented in first-order predicate logic
for use in ILP systems, but has also been converted to OWL for use in DL learning
as is distributed with version 1.2 of the DL-LEARNER system. The resulting OWL
ontology contains 88 classes, 5 object properties, 6 datatype properties and 14,145
individuals. The ontology contains classes which describe types of atoms, bond
types and functional group structures.

We applied both the OWL-MINER and DL-LEARNER systems to this dataset [81],
running each experiment in isolation on the same machine with 16Gb RAM and one
CPU thread for a maximum runtime of 15 minutes. The same hypothesis concept
language was used in both systems. Algorithm [7] was set to locate one best solution
(k = 1) with beam (By,x) and expansion set (E,x) sizes of 10,000 each. During
experimentation, we began testing with a minimum threshold on accuracy of 99%,
but only found solutions at around 90% accuracy, which we set as the minimum
accuracy for the experiments described below. In order to compare the performance
of OWL-MINER with DL-LEARNER, we observed the accuracy of newly discovered
best-performing candidates and the number of concepts which had been tested up

to that point of discovery, as shown in Figure
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Figure 6.4: The performance of OWL-MINER and DL-LEARNER over the mutagenesis
dataset, plotting the number of concepts searched by each system versus the accuracy
of the best performing candidate.

From Figure we see that OWL-MINER locates a concept with around 89%
accuracy after searching through around 3,000 concepts, and eventually locates a
concept with around 91% accuracy after searching through around 90,000 concepts.
DL-LEARNER locates a concept of 86% accuracy after searching through around 8,000
concepts, and eventually locates a concept with around 91% accuracy after searching
through over 1.2 million concepts, more than 13 times the number of concepts OWL-
MINER took to reach a similar result. OWL-MINER located its best concept at 90.96%

accuracy after less than 30 seconds, as follows:

Compound M Z*hasStructure.(—Methyl 1 —~HeteroAromatic5Ring I
—HeteroAromatic6Ring 1 —Benzene) 1 Z*hasAtom.(Hydrogens) 1
umo.[> —3.768 A < —1.102]

This concept can be read as: mutagenic compounds are those with at least four structures
which are not methyl, benzene or hetero-aromatic 5 or 6 rings, and which have at least four
hydrogen-3 atoms, and which have a lumo value of between -3.768 and -1.102. Similarly,

the best concept produced by DL-LEARNER also with an accuracy of 90.96% was:

Compound M 3hasAtom.(Icharge.[< —0.368]) 11
>*hasStructure.(—Benzene 1 —Methyl) 1 3logp.[> 1.91]

This concept can be read as: mutagenic compounds are those with at least one atom with

a charge of less than or equal to -0.368, and which has at least four structures which are not
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methyl or benzene, and which has a logp value of at least 1.91. Both of these concepts are
expressive and easily comprehensible, highlighting the applicability of DL learning
as a suitable method for this problem.

To test if the best concepts generated by OWL-MINER were over-fitting the data,
we computed the 10-fold cross validation accuracy and F; scores for several mini-
mum accuracy thresholds T, as shown in Table We compared this to the best
5-fold? results produced by DL-LEARNER, and clearly see OWL-MINER produces a

significantly stronger result.

System Tin | Acc. £ 0 (%) | Fy 0 (%) Runtime £0 (s) | Length +¢
0.88 | 86.50 =0.09 | 89.34 £0.08 | 0.79 +0.81 11.4+0.97
OWL-MiINER | 0.89 | 88.25+0.06 | 91.20 £0.04 | 13.19 + 34.92 12.5+2.01
0.90 | 90.50 +0.09 | 92.25+ 0.07 | 77.09 + 104.21 15.7 +£1.25
DL-LEARNER | 0.90 | 84.67 £0.11 | 88.92+0.06 | 916.33 +26.65 | 20.8 +5.68

Table 6.3: Cross validation accuracy and F; scores for various minimum thresholds
over accuracy for the mutagenesis dataset with the OWL-MINER and DL-LEARNER
systems.

A sample of previously reported best accuracies of a variety of methods which
have been applied to the mutagenesis problem can be found in Table |6.4| from Lodhi
and Muggleton [61], to which we have added our results for OWL-MINER, DL-
LEARNER and also ALCHEMY, a higher-order logic learning system [72]. From Ta-
ble |6.4{ we see that the 10-fold cross validation accuracy for the mutagenesis problem
ranges from around 85% to 95% accuracy, so the best accuracy produced in our ex-
periments by OWL-MINER are comparable.

The strongest reported result for mutagenesis was produced by Aleph, an ILP-
based system [61]. To obtain this result, Aleph generated twenty-five theories for an
ensemble classifier, which differs greatly from the single-concept outputs of OWL-
MINER and DL-LEARNER. We argue that such multi-clause theories are not as readily
comprehensible as the individual DL concepts we have produced, and nevertheless
observe that both OWL-MINER and DL-LEARNER could be modified to employ a
similar ensemble strategy. We re-ran this experiment in our environment and found
that Aleph took over 7 minutes of processing time to achieve its best result. We also
note that Aleph was reported to have produced results of 86.3% to 87.7% accuracy
in around 10 to 25 seconds [110], which is outperformed by OWL-MINER in terms of

2DL-LEARNER failed to complete a full 10-fold test, experiencing memory errors. We reduced the
number of folds to test until the software successfully produced a result at 5-folds.
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Type System Citation | Evaluation Accuracy (%)
Method
P-Progol [95] 10-fold 88.0+2.0
ILP FOIL [77] 10-fold 86.7
STILL [89] Single 93.6 +4.0
train/test
split: 90/10
MFLOG [50] 10-fold 95.7
RSD 10-fold 92.6
PPILP SINUS [51] 10-fold 84.5
RELAGGS 10-fold 88.0
Aleph+RS [61] 10-fold 95.8 + 3.3
EMILP Boosted FOIL [771 10-fold 88.3
MIK [34] N/A 93.0
Kernels RK [22] 10-fold 85.4
GK3 [62] leave-one-out | 96.1
. nFOIL 10-fold 783+ 12.0
Naive Bayes +ILP | 1o oh+NB B3l 10-fold 728 +11.7
Others Neural Networks 10-fold 89.0+2.0
Linear Regression | [95] 10-fold 89.0+2.0
CART 10-fold 88.0+2.0
| HOL | ALCHEMY [ [72] [ 10-fold | 89.39 |
DLL OWL-MINER 10-fold 90.50 + 0.09
DL-LEARNER 5-fold 84.67 + 0.11

Table 6.4: Various accuracy results for the mutagenesis problem taken from [61],
with the addition of Higher-Order Learning (HOL) from [72] and Description Logic
Learning (DLL) reported for the first time here. The various other type acronyms are:
Inductive Logic Programming (ILP), Propositionalisation-based ILP (PPILP), and En-
semble Methods in ILP (EMILP). The best result as highlighted in bold was achieved
by an EMILP system based on Aleph [61].

scalability which produced a concept of 89% accuracy in around one second.

We attribute the strong performance of OWL-MINER over DL-LEARNER to the
efficiency achieved by restricting the set of concepts available to the refinement op-
erator which are suitable for testing as search candidates, together with the method
of early pruning based on upper bound estimation, and the simultaneous learning
of lower and upper bounds on datatype property restrictions with numerical ranges.
These fundamentally different approaches are the main advantages the OWL-MINER
system has over the DL-LEARNER system which enable it to locate high performing

concepts efficiently.
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6.2.4 Carcinogenesis

The carcinogenesis dataset is another long standing and well-known benchmark
problem in machine learning [96]. Similar to the mutagenesis problem, the carcino-
genesis dataset® contains structured examples of chemical compounds together with
the results of various bioassays and are labelled as being carcinogenic or not. The full
dataset contains 337 example compounds, 182 of which are labelled positive for car-
cinogenicity, and the remaining 155 are labelled negative as being non-carcinogenic.
The OWL ontology capturing this dataset from the DL-LEARNER project contains 142
classes, 18 object properties, 1 datatype property and 22,374 instances, along with
class axioms describing the subsumption hierarchy of atom, bond and functional

group structural classes, such as various types of halides or ring structures.

The DL-LEARNER system has been reported to achieve the best results over the
carcinogenesis dataset as a classification problem when setting a minimum accuracy
of 72% [58]. In our first experiment, we compared the number of concepts searched
by OWL-MINER when running a classification task based on accuracy with a mini-
mum threshold of 72% against the performance of the current best concept. We also
ran the same experiment with DL-LEARNER and the OCEL search strategy on the
same machine, the results of which are shown in Figure These results show that
while OWL-MINER took slightly longer to locate high performing concepts initially,
ultimately it searched fewer concepts (1,516,184) to reach a solution with the greatest
overall accuracy of 71.51% after around 15 minutes of computation time. In com-
parison, DL-LEARNER found a concept of accuracy 70.33% after searching 2,028,625
concepts in around the same time. As previously reported [58], the DL-LEARNER
system is indeed capable of locating high accuracy concepts for this problem. The
concepts produced by OWL-MINER were similar to those found by DL-LEARNER,

however OWL-MINER was generally faster.

The best concept produced by OWL-MINER for this experiment with an accuracy
of 71.513% was:

Compound 1 ( *hasStructure.(Halide) U (VhasAtom.(—Sulfur,y M —Sulfur
—Sulfur,, M —Titaniumy4 1 ~Nitrogens, M —Nitrogenss I —Nitrogens N
—Oxygen,, ) M JamesTestPositive.({true})))

The best concept produced by DL-LEARNER for this experiment with an accuracy

3http://www.cs.ox.ac.uk/activities /machlearn /cancer.html
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Figure 6.5: The performance of OWL-MINER and DL-LEARNER over the carcinogen-
esis dataset, plotting the number of concepts searched by each system versus the
accuracy of the best performing candidate over a maximum runtime of 15 minutes.

of 70.33% was:

( Z3hasStructure.(Halide 1 —Halideyo) U JamesTestPositive.({true})) I
hasStructure.(—Phenol M —Ring) N
>2hasAtom.(—lodine M Icharge.(double[< —0.027]))

The 10-fold cross validation accuracy of OWL-MINER for the carcinogenesis prob-
lem is summarised in Table In producing these results, OWL-MINER was con-
figured to determine the first top-10 concepts which met the minimum accuracy
threshold as specified in each row of the table. For each fold, the concept with the
highest accuracy over the training set was selected, which did not necessarily have
the greatest test set accuracy. This is particularly apparent when the maximum er-
ror was set to 0.36 and 0.35. When the maximum error was set to 0.30, we find that
OWL-MINER produced the highest reported 10-fold accuracy for this problem. These
figures agree with those reported for DL-LEARNER, where it is observed that longer
concepts found with a maximum error of 0.30 or less do not necessarily reduce the
cross-validation test error, which may be a sign of over-fitting. Figure |6.6| plots the

training and related test accuracies for this experiment.

Previously reported results for the carcinogenesis problem can be found sum-
marised in Table [6.6] from [58], with the addition of the result for OWL-MINER.
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Error | Acc. £0 (%) | F1 £ 0 (%) Runtime (s) Length
040 | 6127 £6.45 | 56.69 +10.26 | 0.21 +0.14 4+ 0.00
0.39 62.24 +8.13 | 59.31 + 12.17 | 0.17 £ 0.09 4+ 0.00
0.38 | 6231 £744 | 59.22 +£12.03 | 0.09 + 1.79 48 +1.68
037 | 6099 +747 | 57.89 £7.64 | 11.54 +21.27 6.5 +2.42
0.36 59.81 &+ 7.17 | 57.41 £ 11.13 | 35.61 & 71.61 9 +240
035 | 57.84 £9.04 | 59.12 £+ 10.03 | 158.41 + 190.48 104 £ 1.26
0.34 | 63.96 +9.43 | 64.08 £ 13.10 | 237.49 £ 147.04 10 £ 2.62
033 | 6544 £890 | 67.78 £835 | 902.62 + 137495 | 12.1 4+ 5.04
0.32 63.57 £ 11.13 | 65.17 £ 11.72 | 667.56 £+ 872.74 129 4+ 2.73
0.31 | 6712 £8.72 | 68.50 &+ 8.41 | 456.01 + 324.93 13 £ 1.89
0.30 69.04 - 7.51 | 70.28 + 7.52 | 1659.21 + 1110.36 | 16.9 4+ 2.51
0.29 | 66.36 £4.95 | 67.42 +£552 | 1706.72 + 922,55 | 16.8 £+ 2.35
0.28 67.17 +£9.32 | 67.96 +9.82 | 2317.14 4+ 1040.87 | 18.4 &+ 3.37

Table 6.5: 10-fold stratified cross validation accuracy for the carcinogenesis problem

for OWL-MINER.

Figure 6.6: The 10-fold stratified cross validation performance of OWL-MINER for
various minimum accuracy (maximum error) values over the carcinogenesis dataset,
where we see from the fitted line that test accuracy mostly increases with training

accuracy.

6.2.5

The mushroom dataset [87] consists of 8,124 hypothetical examples of the character-

istics of mushrooms from the agaricus and lepiota families, with roughly half labelled

Avg. 10-fold accuracy
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as being edible (4,208) and the other half as being poisonous (3,916).
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’ Type \ System \ Citation \ Accuracy (%)

Aleph with Ensembles [27] 59.0 to 64.5
Boosted Weak ILP [44] 61.1
Weak ILP [44] 58.7

ILP | Aleph Deterministic Top-Down 0.7 [110] 57.9+£9.8
Aleph Randomized Rapid Restarts 0.9 | [110] 57.6 6.4
Aleph Deterministic Top-Down 0.9 [110] 56.2+9.0
Aleph Randomized Rapid Restarts 0.7 | [110] 54.8 £9.0

DLL DL-LEARNER [58] 674+7.9
OWL-MINER 69.04 + 7.51

Table 6.6: Various accuracy results for the carcinogenesis problem from [58], with the
inclusion of DL-Learning (DLL) results for OWL-MINER and DL-LEARNER systems.
The best result as highlighted in bold was achieved by OWL-MINER and second-best
in italics with DL-LEARNER.

Figure 6.7: The mushroom dataset [87] contains feature descriptions of thousands of
mushrooms, labelled as being either edible or poisonous (image from [102]).

Originally, this dataset was presented in an attribute-value format, but for the
purposes of evaluating the performance of OWL-MINER we have converted the data
into RDF and OWL. As part of this process, mushrooms are described by their com-
ponents and sub-components, such as a mushroom having a cap and stalk, which
each have different shapes, surface types, colors, and gills. The resulting ontology
contains 84 classes, 19 object properties, 2 datatype properties and 40,679 individuals
describing each of the examples.

We executed both OWL-MINER and DL-LEARNER over this problem to learn single
concepts which correctly classify edible mushrooms over poisonous ones, as a simple
known concept already exists for this problem, namely: edible mushrooms are those with
a spore print color which is not green, and which have an odor which is not almond or anise.
As this concept has 99.41% accuracy on the whole dataset, we set the maximum error
rate for concepts learned by either system to be 1%.

Figure [6.8 plots the runtime execution of OWL-MINER and DL-LEARNER for this
problem, where we observed that OWL-MINER found the highest accuracy concept
at 99.41% in 42 seconds after testing less than 5,000 unique concepts. In compari-

son, DL-LEARNER using the OCEL search strategy finds concepts of at most 98.82%
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Figure 6.8: The performance of OWL-MINER and DL-LEARNER over the mushroom
dataset, plotting the number of concepts searched by each system versus the accuracy
of the best performing candidate.

accuracy after testing around 100,000 concepts taking more than 20 minutes of com-
putation time on the same machine. Afterwards the system was allowed to continue
running for a total of 30 minutes but no better concept was found after testing 174,000
concepts and the search was terminated. Similarly, executing DL-LEARNER with the
CELOE search strategy resulted in the best concept having 98.08% accuracy also after
30 minutes of execution time, which is poorer so is not depicted in Figure The

best concept produced by OWL-MINER was:

Mushroom M 3hasOdor.(—~Foul M —Fishy M =Spicy M =Pungent M =Creosote) N
M3hasSporePrintColor.(—Green)

This concept has an accuracy of 99.41% and enumerates the odors which indicate
poisonous mushrooms, and is therefore similar to the most general rule with the

same accuracy as described in the literature.

The best concepts produced by DL-LEARNER were:

Mushroom M 3hasOdor.(—Foul 1 —Fishy M —Spicy M —Pungent 11 =Creosote) I
JhasRing.(IringNumber.(int[> 2]) M IhasSporePrintColor.(—Green)
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for the OCEL search strategy with an accuracy of 98.82%, and:

Mushroom M FhasOdor.(—Foul M —Fishy M =Spicy M —Pungent M —Creosote) I
JhasRing.(—Large)

for the CELOE search strategy with an accuracy of 98.08%. It is possible that con-
cepts without refinements of the property hasRing were rejected in the local search
implemented by DL-LEARNER, as otherwise it is clear it should have located the
same best concept as found by OWL-MINER. We also tested the 10-fold strati-
fied cross-validation performance of OWL-MINER of this problem, which achieves
a 99.22% =+ 0.04% accuracy and 99.23% =+ 0.001% F1 score.

If we assume the mushroom dataset is a representative sample of all species of
mushrooms from the agaricus and lepiota families, we may be equally as interested
in high accuracy concepts which describe poisonous mushrooms. This assumption
may be contrast with the carcinogenesis and mutagenesis datasets which sample
a tiny proportion of all possible molecules, where learning concepts to describe
non-carcinogenic or non-mutagenic molecules would be generally less useful. By
configuring OWL-MINER to seek concepts which classify poisonous mushrooms, it

produced the following concept with 99.41% accuracy within 15 minutes:

(Mushroom M 3hasRing.(Pendant) M 3hasSporePrintColor.(Green)) L
(Mushroom M 3hasOdor.(—Nil M —~Anise 1 —Almond))

We also configured and ran DL-LEARNER to perform the same learning task which
produced the following concept with 98.52% accuracy using the OCEL search strat-
egy after 2 minutes, with no better concept found after searching for a further 58
minutes:

Mushroom M 3hasOdor.(—Nil M —Anise 1 ~Almond)

Lastly, to construct concepts which describe either poisonous or edible mushrooms,
we ran OWL-MINER to solve this as a subgroup discovery problem with a minimum
threshold of 90% weighted relative accuracy (Definition for a maximum of 15
minutes. The results of this single experiment are summarised in Table From this
table, we see that a variety of features of mushrooms can be used to describe edible
or poisonous subgroups with high accuracy. Because the dataset is hypothetical, in
practice these rules should not be used to distinguish poisonous mushrooms from

edible ones, however the experiment demonstrates the capability of the OWL-MINER
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system to generate different descriptive hypotheses of either type over a variety of

features in a single experiment.

WRA % | Acc % | Concept
-96.936 | 1.477 | Mushroom M 3hasOdor.(—~Nil M —~Anise 1 —Almond)
-90.472 | 4.825 | Mushroom M 3hasOdor.(—Nil M —Anise) N
FhasCap.(Cap M FhasShape.(—Bell))
-90.123 | 4.973 | Mushroom M 3hasPopulation.(~Numerous M —Clustered) I
FhasOdor.(—Nil M —Almond) I
JhasSporePrintColor.(—Purple)
96.936 98.523 | Mushroom M 3hasOdor.(—Foul M —Fishy M
—Musty M —Spicy M ~Pungent M —Creosote)
92.237 | 96.012 | Mushroom M JhasSporePrintColor.(—Green M —Chocolate) 1
JhasRing.(—Large) M 3hasCap.(Cap I
FhasGill.(Gill M 3hasSize.(Broad)))
91.317 | 95.569 | Mushroom M JhasRing.(—None M —Large) I
hasSporePrintColor.(—Chocolate) I
hasCap.(Cap M 3hasGill.(Gill 11 3hasSize.(Broad)))

Table 6.7: Several top concepts generated by OWL-MINER representing subgroups
in the mushroom dataset using weighted relative accuracy (WRA) with a minimum
threshold of 90%. Concepts with positive WRA values largely correspond to edible
mushrooms, and negative WRA values largely correspond to poisonous mushrooms.
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6.3 Performance Analysis

This section contains an analysis of the performance of novel algorithms imple-
mented in the OWL-MINER system, including: the construction of the context graph
and local axioms in preparation for learning (§6.3.1); the speed of refinement while
learning (§6.3.2); detection of redundancy in learning with our refinement operator

p5 (§6-3.3); the speed of coverage checking (§6.3.5); and the effect of parallelisation in
the construction of the context graph and in our learning algorithm (§6.3.6).

6.3.1 Preparing for Learning

In this section, we analyse the cost of construction of the context graph for each
of the problems of Section Prior to the execution of the learning Algorithm [7]
in OWL-MINER, the knowledge base is pre-processed with classification by a DL
reasoner, then a context graph (Definition is constructed to describe the space
of concept terms available to the refinement operator p;. We assess the performance
of Algorithm | which is used to construct a context graph in preparation for learning.

The performance of Algorithm[is a function of several parameters, including the
size of the number of examples and the individuals and literals connected to them
by role assertions in A, the number of concepts describing these individuals, and the
expressivity of the chosen hypothesis language. For each of the problems analysed in
Section Table |6.8| captures statistics about the time taken to compute the context
graph in each case. As each context graph is shaped like a number of trees, this table
also lists the total number of leaves corresponding to the contexts of the most deeply
nested subexpressions to give an indication of the resulting size. The table also lists
the number of examples, concepts, and roles and the chosen hypothesis expressivity
for each problem. In each case, classification of the knowledge base took less than
two seconds with the Pellet DL reasoner.

From Table we see that the time taken to construct the context graph did not
exceed 30 seconds for any problem when existential (3), universal (V) and minimum
qualified cardinality restrictions (") were included in the hypothesis language. The
resulting context graph, which is structured like a number of trees rooted at every
concept which describes any of the examples e € £, is shown in terms of the number
of leaves which indicates the size of the graph by number of paths from the root of
each tree. By simply including maximum qualified cardinality restrictions across all
roles for each problem, we see from Table that the time taken to construct the
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Problem | Time (s) | Leaves | |£] |Ni| INc| | [Nor| | |Npr| | ="r
Poker 15.79 62,237 | 603 3,635 | 39 5 0 4
Muta. 16.61 15,221 | 230 14,145 | 87 5 6 5
Mush. 25.43 285 8,124 | 40,679 | 83 19 2 5
Carc. 29.49 20,086 | 337 22,374 | 144 | 18 1 5

(a) Size of the context graph and time to compute for a number of problems. The maximum
value 7 for minimum qualified cardinality restrictions (Z"r) is shown.

ny

Problem | Time (s) | Leaves
Mush. 25.46 285

Muta. 41.00 45,188
Carc. 68.44 57,790

Poker 357.33 927,385

INVES 1 RS 1R 1IN

(b) As per Table above, but also including maximum values n for maximum qualified
cardinality restrictions ( S"'r) in the hypothesis language.

Table 6.8: Context graph construction times with Algorithm @ for a variety of prob-
lems along with the size of the resulting context graph viewed as a tree by the num-
ber of leaves, along with problem statistics and the use of existential (3), universal
(V) and minimum qualified cardinality restrictions (©") in the hypothesis language.
|Nor| and |Npg| denote the number of object and datatype roles, respectively.

context graph, along with the size of the resultant graph, increases by a factor of
around 2 to 22 for each problem except the mushroom dataset.

The time taken to execute Algorithm [ depends on the structure of the examples
in the knowledge base, as well as the number of concepts, roles and role quanti-
fiers available to describe these. Notably, the occurrence of r-successor sets (Defi-
nition 4.2.14) with cardinalities greater than 1 in combination with minimum and
maximum cardinality restrictions generate many new edges between nodes in the
context graph as the various possible cardinalities are enumerated. We observe this
particularly in the Poker dataset (§6.2.2) where each individual representing a card
may have multiple successors for the roles sameRank and sameSuit in each hand, thus
causing Algorithm {4f to generate multiple edges between each class describing cards
by suit and rank. This high branching factor is compounded by the depth of the
context graph which permits nested sequences of roles by describing links between
each card in a hand. Notably, while the Mushroom dataset (§6.2.5) had many more
examples, individuals, classes and roles than the Poker dataset, context graph con-
struction took less than 30 seconds to produce a several trees with 285 leaves in total,
as each individual was often only linked to others by single role assertions. This lim-

ited the branching factor of the context graph as minimum and maximum cardinality
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restrictions were found to be irrelevant for use with the mushroom dataset and were
subsequently excluded by Algorithm [4]

The time taken to construct the context graph compares favourably with the com-
putation time of the learning Algorithm [7]in locating solutions for each of the prob-
lems described above. In each case, the time taken to compute the context graph
in addition to the computation time for learning was less than the time taken by

DL-LEARNER, and in each case, producing stronger results.

6.3.2 Refinement Evaluation Speed

Once the context graph is computed, it is used in the learning Algorithm [7] by the
refinement operator p; to determine which concept expressions are available to re-
fine to for any subexpression of a concept. As part of this process, the refinement
operator traverses the context graph to determine the set of most applicable con-
texts (Definition for every subexpression of a concept C under refinement.
Figure presents the various times taken for refinement of all subexpressions of
a single concept for various concept lengths. In each problem displayed, the most
expressive hypothesis language was used to assess the performance of the operator
for the construction of as many concepts as possible.

All values plotted in Figure correspond to the time taken for a call of the
refinement operator to produce all refinements of any single expression. As longer
concepts have potentially more subexpressions to refine, we might reasonably expect
the time taken to produce refinements of longer concepts to take longer, however
the figures show otherwise. We attribute this result to the context graph which
limits the number of options available to the refinement operator in deeply nested
subexpressions which cover fewer individuals and literals as computed by the chase
Algorithm

6.3.3 Occurrences of Redundancy

Proposition describes how the refinement operator p; is redundant (Defini-
tion in that the application of this operator may produce multiple refinement
chains leading to equivalent concepts. This property is a source of inefficiency in
the search performed by Algorithm E] as the operator p; will direct the search into
previously visited parts of the search space. In each of the problems discussed in

Section we analysed how many times a particular concept was generated in the
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Figure 6.9: Refinement speed versus concept length for all four benchmark problems
discussed in Section These figures show the average time in milliseconds (with
standard deviation error) taken to produce all refinements of a single concept for
concepts of various lengths.

search by maintaining a set of all concepts generated by p; and recognising when

concepts were revisited.

From Figure we see that redundancy in the search occurs in varying propor-
tions based on the problem being solved. As the hypothesis language was largely the
same for each problem analysed in Figure the difference lies in the search space
of concepts which is structured with respect to the input examples and the concepts
and roles in the knowledge base which describe them. After analysis of the execution
of these problems, a common source of redundancy appears to be refinement chains

of the following form:
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Figure 6.10: The proportion of repeated versus unique candidate expressions encoun-
tered in the entire search for solutions to various problems described in Section
Repeated expressions occur because of the redundancy of the refinement operator p5
used in the search.

The operator p; does not restrict which type of refinement steps which are per-
mitted in any one subexpression context, such as in this example with the refinement

of the filler concept A ~», B or conjunction with Us.(C). As such, both of these

steps are permitted as refirﬁements of ©r.(A). For learning problems which may per-
mit many different quantified role expressions in any one subexpression context, this
particular source of redundancy appears to be more likely. For example, we observe
that this is indeed the case with the Poker data set where each subexpression con-
text referring to instances of Card can be refined in conjunction with several other
quantified roles such as nextRank, sameSuit and sameRank which each have the range
Card, thereby permitting nested expressions of the same kind. This situation results
in a large number of possible redundant refinement chains as shown in Figure
which reports that around 15% of all concepts were revisited throughout the search

for solutions.

In the OWL-MINER system, redundancy in the search is managed by normalising
all concept expressions by ordering operands by their partial order, permitting the
fast identification of syntactically equivalent concepts. In this way, the set of concepts
in the search frontier or beam of Algorithm [7]can maintain unique sets of concepts at
all times and eliminate duplicates. However, as the frontier or beam is fixed in size,
the search may re-introduce previously seen concepts after they leave the frontier or
beam set. For this reason, OWL-MINER is configurable to maintain a seen set for

recording concepts which have been expanded by refinement to detect redundancy
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globally. This seen set permits the search to avoid refining a concept which has been
refined before. The use of this seen set is optional however, as it potentially consumes
a large amount of memory at runtime for long searches, and the redundancy of p5
appears, at least by Figure to be limited in practice.

6.3.4 Occurrences of Improper Refinements

Proposition describes how the refinement operator p; is improper (Definition
in that, for any concept C, the application of this operator as p; (C) may produce re-
finements which are equivalent to C. As discussed in Section of Chapter
improperness can negatively impact the performance of a learning algorithm which
searches by refinement by introducing concepts into a limited search space which
cannot be distinguished as better or worse relative to each other by heuristics based
on coverage. In this situation, the search may prune away concepts which lead to so-
lutions, or may at least waste computational resources in considering concepts which
do not lead to solutions.

In each of the problems discussed in Section we analysed how many times
improper refinement steps occurred in the search versus all refinement steps. Fur-
thermore, we compared this to the rate of improper refinement steps which occurred
with the subexpression suspension method as described in Section [5.3.2]to limit so-called
ineffectual refinements (Definition [5.3.T), the results of which are presented in Table

and Figure

Problem | Improper (%) | Improper SS (%) | A (%)
Muta. 41.54 33.78 -18.68
Carc. 8.70 6.16 -29.20
Mush. 46.81 36.21 -22.64
Poker 41.55 19.58 -52.88
Trains 69.24 56.26 -18.75

Table 6.9: Proportions of occurrences of improper steps amongst all refinement steps
for a variety of problems discussed in Section along with the proportion of oc-
currences of improper refinement steps with subexpression suspension enabled (SS)

(, and the difference between the two.

From Table and Figure we see that improper refinement steps in the
search occur in varying proportions based on the problem being solved. Note that
the hypothesis language was the same for each problem analysed in Figure

Improperness appears to account for a significant proportion of all refinement steps,
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Figure 6.11: The proportion of (proper) versus (improper) refinement steps encoun-
tered in the entire search for solutions to various problems described in Section
shown both without and with (*) the subexpression suspension method. Improper
refinements occur because of the improperness of the refinement operator p; used in
the search.

and we observe that this is particularly the case when refining concepts which involve
disjunctions as was enabled for each of the problems tested here where ineffectual re-
finements may occur. The results of various experiments reported in Section [6.2| were
all conducted with subexpression suspension enabled. With subexpression suspen-
sion disabled, we observed that the amount of improper refinement steps increased
by 18% to 52%, however generally still reached the same solutions in comparable

time for these experiments in particular.

6.3.5 Cover Evaluation Speed

During the execution of the learning Algorithm [/} the two main operations are the
refinement of candidate concept expressions with p;, and their evaluation relative to
certain performance measures which rely on coverage computation by Algorithm
In the previous section, we showed that refinement was generally very fast for a
variety of problems. In this section, we analyse the performance of coverage check-
ing by Algorithm [11] also relative to the same set of problems. From Figure [6.12]
we observe that the computation of coverage for candidate hypothesis expressions
by Algorithm [11| completely dominates the overall processing time of learning Al-
gorithm [7] which includes concept refinement and all other operations. For each of
these problems, we profiled the average time taken to compute coverage for individ-

ual concept expressions of varying lengths, and also by maximum role depth in the



176 Implementation and Evaluation

100

90

70 +

60 |
50 e Refine
xxx® Cover
40

30

Total time in execution (%)

20 |
10 -

Muta. Carc. Mush. Poker

Figure 6.12: This plot shows the proportion of time spent in refinement (refine), and
coverage evaluation (cover) for each of the various problems described in Section
We clearly see that coverage evaluation dominates processing time in each case, with
refinement accounting for generally less than 2% of the total computation time for
each problem.

expression as this was shown to be the dominating factor in the complexity of this

operation in Section

From Figures and we observe that the overall processing time to fully
evaluate the cover of each candidate hypothesis rarely exceeds several milliseconds.
On the Carcinogenesis and Mutagenesis problems, complete evaluation generally
took no longer than 1 millisecond. For Carcinogenesis, coverage computation in-
volved testing up to 337 examples spanning a maximum of 22,374 instances and
literals, and for Mutagenesis, coverage computation involved testing up to 230 exam-
ples spanning a maximum of 14,145 instances and literals. The Mushroom and Poker
datasets contained considerably more examples, where Mushrooms contained 8,124
examples spanning a maximum of 40,679 instances and literals, and where Poker

contained 4,000 examples spanning a maximum of 22,307 instances.

In general, we observe that as concepts grow in size, the time taken to evaluate
their cover over all examples does not tend to increase significantly. We expect this
is because longer concepts tend to pose more constraints on examples, permitting
Algorithm (10| for instance checking to fail fast, which in turn permits Algorithm
to move on and check other examples. This effect may also apply to concepts with
deeply nested roles, as we observed that the time taken to compute coverage for
concepts with nested roles does not generally significantly increase with nested role
depth.
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Figure 6.13: Average cover evaluation speeds for the Mutagenesis || and Car-

cinogenesis (6.13b) datasets.

6.3.6 Parallelisation

Parallelism is exploited in two ways by the OWL-MINER system implementation, in
both the computation of concept coverage, and in the instance chase procedure prior
to learning. As we observed in Figure it is clear that the majority of compu-
tation time spent in learning is dominated by concept coverage evaluation. Because
of this, OWL-MINER parallelises the coverage evaluation of all refinements of a con-
cept amongst a pool of worker threads. Once complete, each thread independently
determines if the evaluated refinement should enter the frontier or beam, and if so,
synchronously updates this set with the new candidate. Therefore, as the number
of threads grows, adding new refinement candidates to the frontier or beam is the

bottleneck as multiple threads will block until they gain access.

Figure [6.15] plots the performance of OWL-MINER for the Carcinogenesis prob-
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Figure 6.14: Average cover evaluation speeds for the Mushroom (6.14a) and Poker

(6.14b) datasets.

lem for various numbers of threads for coverage evaluation. As we can see, using
multiple threads reduces the overall processing time to reach solutions of a certain
accuracy, however is limiting in that as the number of threads grows, the longer
they wait to lock the frontier or beam to add new candidates after evaluation. Using
multiple threads to evaluate the cover of concepts and to add them to the frontier or
beam in this way also introduces non-determinism in the search. This occurs because
threads which update the frontier with new candidates may do so in an uncontrolled
order, and as the frontier or beam is fixed in size, various candidates may be pruned
over others simply based on the time at which they were introduced. In practice, we
found that the non-determinism introduced by processing coverages in parallel was
evident in the time taken to reach solutions but not in the quality of solutions, as
the best candidates are the least likely to be pruned when ordered by the heuristic

function.
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Figure 6.15: The effect of parallelisation on learning Algorithm @ As more threads
are available to perform coverage computation on refined expressions, the overall
processing time to reach solutions of 69% accuracy for the Carcinogenesis problem
is generally reduced, however increases slightly as more threads contend to syn-
chronously update the single frontier or beam set with results.

The instance chase of Algorithm [4|is also inherently parallelisable as r-successor
sets can be computed for each individual in the knowledge base independently, and

the resulting context graph components can be updated synchronously.
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Figure 6.16: The effect of parallelisation on the instance chase Algorithm As
more threads are available to perform the instance chase, the overall processing time
to compute the context graph for the Carcinogenesis problem is reduced.

Figure plots the performance of OWL-MINER for the Carcinogenesis problem

for various numbers of threads when performing the instance chase Algorithm
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for constructing the context graph. As we can see, using multiple threads reduces
the overall processing time, but as we saw when parallelising the learning problem,
the performance increase is limited by the requirement to update the context graph
synchronously as threads wait for a lock on parts of the context graph to update
it. This effect appears to be less significant in this case however, as the context
graph is a large, multi-object data structure and threads are more likely to update
different graph components, reducing the possibility that each thread will need to
block to wait for resources. With fine-grained locking, the instance chase algorithm
is therefore more amenable to parallelisation. In Figure we note that the overall
computation time increased slightly when the number of threads was set to equal
the maximum number available on the host machine, which in this case was set to
eight. This can be explained by the fact that the main thread executing the overall
algorithm was set to wait while other threads processed the context graph, and was
not able to operate at full capacity as opposed to when the number of threads for

processing the chase was less than eight.

6.4 Conclusion

In this section, we described our system OWL-MINER which implements the var-
ious algorithms discussed in this thesis, from the instance chase Algorithm (10| to
the learning Algorithm [7]and supplementary functions such as the refinement oper-
ator p; and coverage checking Algorithm We saw that OWL-MINER performs
favourably against other state of the art implementations including DL-LEARNER
which is the closest system for comparison. In particular, OWL-MINER produces
strong results in terms of both the quality of solutions found as evidenced across
four particularly challenging benchmark datasets: poker, mutagenesis, carcinogene-
sis and mushrooms. In practice, the OWL-MINER system has been developed with a
particular goal in mind, which is to support the analysis of other similarly large and
complex knowledge bases in the life sciences. In the next chapter, we will describe
how we are working on integrating the OWL-MINER system into a suite of analysis
tools to support experimental analysis to address a problem in structural biology

known as biological macromolecular crystallisation [82} 71].



Chapter 7

Case Study: Biological

Macromolecular Crystallisation

In this chapter, we describe a scientific problem domain known as biological macro-
molecular crystallisation (§7.1). This domain is data and knowledge rich and is par-
ticularly amenable to the application of the supervised learning techniques which
we have developed in this thesis. Indeed, this domain was the original motivation
for our work. We discuss how Semantic Web technologies are helping to collate and
organise data and knowledge in this domain (§7.2) and how DL learning systems
like OWL-MINER can be used to mine this data (§7.3) before describing how the
OWL-MINER system is currently being integrated into a laboratory setting to aid in
experimental analysis (§7.4). Finally, we remark on the current progress of this work,
and opportunities for future development (§7.5) before concluding (§7.6).

7.1 Biological Macromolecular Crystallisation

7.1.1 The protein crystallisation bottleneck in structural biology

Recent advancements in proteomics have produced an explosion in the number of
proteins as potential drug targets for treating disease. The field of structural biol-
ogy is concerned with ascertaining a precise understanding of the three dimensional
structure of such proteins which is crucial in determining their function for use in
drug design. Currently, X-ray crystallography is the most accurate and widely used
method to determine protein structures. However, the number of protein targets be-
ing produced has rapidly outpaced our ability to determine their structure using this
method. The necessary step of protein crystallisation in the process of X-ray crystal-

lography is currently a major bottleneck, often taking from weeks to years to deliver

181
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a protein crystal of sufficient quality for further analysis [17].

Protein crystallisation has an unacceptably high failure rate: studies in structural
genomics suggest that, out of around 45,000 soluble, purified target proteins, around
14,000 crystallised and only around 5,000 resulted in a crystal structure [9]. One
study [93] reported that, of a set of 96 proteins, it took around 150,000 crystallisa-
tion experiments to produce 277 crystal leads for 36 of the proteins; this means that
only 0.2% of experiments produced crystal outcomes, and 99.8% produced a dif-
ferent outcome. Such failure rates are commonly encountered for any new protein
crystallisation trial.

Protein crystallisation is a very complex physicochemical process with a large
number of experimental factors [63]. This results is a vast space of possible experi-
mental conditions, and very little science exists to guide the selection of appropriate
conditions for crystallising any given protein ab initio. The best methods for protein
crystallisation to date are still largely based on random sampling. High-throughput
protein crystallisation facilities (such as CSIRO! Collaborative Crystallisation Cen-
tre, C3?) typically tackle the problem using automation, where many crystallisation
experiments can be carried out in parallel using robotics. However, such facilities
are still failing to keep up with the demand for protein structures and protein crys-
tallisation remains a bottleneck in structural genomics studies. Therefore, methods
for assisting crystallographers in making rational choices of experimental conditions
which increase the likelihood of generating high quality crystals are sought to in-

crease the efficiency of the protein crystallisation process [86].

7.1.2 The protein crystallisation method

A single protein crystallisation experiment is typically performed by combining a
small quantity (often ul) of a purified, homogeneous protein sample with a chem-
ical solution called a crystallant cocktail, or precipitant. To coax the protein-protein
molecular interactions necessary for their precipitation into a crystalline solid, the
experiment aims to increase the concentration of the protein in solution to super-
saturation. Figure is a crystallisation phase diagram [2] describing regions where
protein molecules are most likely to interact in solution, increasing in probability
from: stable where protein molecules are free in solution; metastable where short-term

protein-protein molecular interactions occur; labile where interactions are more fre-

1The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia’s national
science agency. Website: http://www.csiro.au
2C3 Website: |http://crystal.csiro.au
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quent permitting ordered aggregation (crystalline structure formation); to unstable

precipitation where interactions occur too frequently to form ordered aggregates.

Unstable
Precipitation
Region

Protein concentration —

FPrecipitant concentration —

Figure 7.1: A crystallisation phase diagram depicting the regions: stable, metastable,
labile and precipitation. Supersaturation starts at the border between stable and
metastable and increases in magnitude through the labile region to the precipitation
region.

Homogeneous nucleation describes events where protein-protein molecular inter-
actions occur to form small ordered aggregates necessary for crystal growth, and
which only occur in the labile region. Once formed, the growth of crystal nuclei are
maintained if the system remains in the labile or metastable supersaturated phases.
If the system enters the precipitation region, disordered aggregates are formed more
rapidly than crystal structures and protein denaturation® may occur. On the other
hand, if the system enters or never leaves the stable region, crystal growth cannot
proceed and any existing crystal structures may dissolve.

The phase of a crystallisation experiment can be observed visually, as depicted in
figure [7.2) which labels a number of different experimental states according to their
phase. The class described as clear often corresponds to the stable or metastable
regions; phase separation and crystals lie within the metastable/labile supersaturated
regions; and precipitate (and sometimes also skin) lie in the unstable precipitation
region.

The most popular method to decrease protein solubility in crystallant solution is
via the physical exclusion of volatile chemicals from the crystallant. This method,

known as vapor diffusion, is depicted in figure 7.3

3Denaturation describes an undesirable event where the native structural conformation of a protein
is disrupted.
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Clear Crystals
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Figure 7.2: Various classifications of protein crystallisation experiment states. This
figure shows images of microbatch experiments [93].

Protein concentration —
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Figure 7.3: A vapour diffusion experiment (by ‘hanging drop’) and related crystalli-
sation phase diagram. Initially, roughly equal proportions of protein and crystallant
solution are suspended in a drop above a reservoir of crystallant solution in a closed
chamber. Over time, volatile components of the crystallant (e.g. water) diffuse into
the reservoir, decreasing the protein solubility in the drop. If protein molecules nu-
cleate in the labile phase region, they may continue to grow until crystals are formed
(path A), else supersaturation of both protein and crystallant may continue into the
precipitation phase region potentially resulting in protein denaturation (path B).

The number of different combinations and concentrations of chemicals in crys-
tallant cocktails, kinds of experiments, and methods for decreasing protein solu-
bility available to a crystallographer are infinite. Additionally, there are often no

indicators with respect to a protein itself that may suggest a particular course of
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experiments that will achieve crystallisation. In practice, crystallographers employ
screening methods for experimentation broadly based on either random or factorial
designs. In random screening, a range of randomly selected experimental conditions
are tested to observe the behaviour of a protein. While not truly random, the popu-
lar sparse matrix screen is a related strategy where the screen conditions are randomly
selected from a range of conditions which have been known to work for a large class
of proteins in the past. The goal of such screening is to determine a starting point
from which further experiments may be refined (optimised) with more screening. In
factorial screening, controllable factors are simultaneously and randomly varied in
a balanced manner across experiments with an aim to enable statistical analyses of
results [16]. In practice, the number of factor levels to vary in a screen can grow very
large, so incomplete factorial screening is usually performed on a carefully chosen
subset of factors. Grid screens are also common which fix all but one or two factors
at a time.

Given a protein sample to crystallise, a crystallographer will often attempt many
hundreds to thousands of screening experiments with no guarantee of success. As
principled methods of crystallisation do not yet exist, the choice of experiments in
these screens is largely guided by preferences of the individual crystallographer
along with their available time and resources.

High-throughput protein crystallisation (HTPC) facilities have emerged in recent
years to cope with the increased demand for protein structure information. These fa-
cilities often employ robotics to automate the setup and observation of a large num-
ber of crystallisation experiments in parallel. One such robotic system is the Rigaku
Minstrel HT™ drop imager* which was designed to incubate many experiments by
storing plates which can contain from between 24 to 1536 experiments each and to
take images of the experiments over time, which are recorded in a database. Crys-
tallographers can then inspect their experiments at any time using a web interface to
track and label their state with classifications such as those shown in Figure

7.1.3 Mining protein crystallisation data

While data generated throughout the course of a protein crystallisation trial may
be used to determine conditions in optimisation experiments, it is common prac-
tice amongst most high throughput facilities to ignore or discard such data once a

suitable protein crystal has been grown. Only the very final experimental condi-

4http://www.rigaku.com/products/automation /minstrelht
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tions which yielded a crystal used to produce a structure are reported in scientific
publications and public databases such as the Protein Data Bank (PDB) [12] and the
Biological Macromolecule Crystallization Database (BMCD) [105].

Data generated in the process of crystallising proteins, particularly data describ-
ing the majority of crystallisation attempts perceived by crystallographers to have
failed, is a source of valuable information. Machine learning methods could be ap-
plied over such data to reveal trends and patterns which, particularly if encoded as
human-comprehensible rules, could be used as guiding principles for the rational se-
lection of crystallisation conditions towards quality protein crystals, thus increasing

the efficiency of protein crystallisation [36| 74, 86, 94].

Several methods of mining such data have been attempted. The space of ex-
perimental parameter values in which a large number of proteins have successfully
crystallised has been investigated by several attempts to perform statistical clustering
of the BMCD. These methods include Euclidean k-means [31]], the results of which
were reproduced and extended with an attribute-value rule learning approach [39,
36]. Other mining attempts include clustering over data within individual HTPC fa-
cilities which include both positive (crystals grown) and negative (failed experiment)
data. Analyses of this data has identified experimental settings which had succeeded
in crystallising a large number of proteins, which gave rise to commercially devel-
oped ready-made screens, many of which are still in use today [74]. Case-based
reasoning [45] and neural networks [26] have been employed as predictive models in
this setting to provide decision support for crystallographers in selecting experimen-

tal conditions which may be likely to crystallise proteins.

In terms of data mining approaches which are capable of generating comprehen-
sible rules to aid in human understanding, the most useful methods to date for clus-
tering and prediction over protein crystallisation data appear to be attribute-value
rule-based approaches [45| 39, 36, 21]. Neural networks models, despite their accu-
racy, are incomprehensible and cannot be interpreted to reveal knowledge which can
aid in understanding how to crystallise proteins and to translate into actions for crys-
tallographers. Studies on mining attribute-value rules from data in the BMCD [39, 36]
report that augmenting the empirical data with hierarchical background knowledge
(such as chemical species and their properties) improved the comprehensibility and
expressive power of the hypotheses generated, as well as providing new features for
learning. However, the expressiveness of the propositional attribute-value rule-based

hypotheses limits such approaches from capturing complex multi-parameter associa-
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tions which are expected to be present in crystallisation data [94]. These studies have
had little practical impact because of the general nature of the knowledge discov-
ered and the fact that statistical analyses of the BMCD are fundamentally ineffective
as they do not take into consideration the number of trials or failed crystallisation

attempts [86].

7.1.4 Integrating heterogeneous protein crystallisation data

Efforts to integrate protein crystallisation experimental data across HTPC facilities
for large-scale analyses like data mining have been hampered by the heterogeneity
of the data and inconsistency in the naming of entities referred to in experiments,
such as chemical names [75]. In order to overcome these difficulties, the Crystallisa-
tion Data Exchange (XDX) Ontology Consortium® was established in 2011 by CSIRO
and several of the world’s largest leading HTPC facilities to develop an ontology with
the Web Ontology Language (OWL)® to comprehensively describe the semantics of,
and a standard nomenclature for, protein crystallisation experimental data [71] which
is required to address the data integration problem [28]. The XDX ontology incor-
porates specific domain knowledge in protein crystallisation as well as published
sources of relevant knowledge such as the ChEBI OWL ontology for chemistry [25]
to capture chemical identifiers and relationships, and the Protein Ontology [70] for
capturing protein features. Efforts are currently underway in CSIRO to map het-
erogeneous crystallisation experimental data from various HTPC facilities using the
Resource Description Framework (RDF) data model”. This effort is aligned with the
vision of the Semantic Web [90] whereby RDF is used to capture and publish data
in a machine interpretable way, and which may be directly published and associ-
ated to other data sets as part of the Linked Open Data (LOD) project [13] for wider
scrutiny [82].

The push to formally capture the semantics of protein crystallisation data and
knowledge for data integration with formal ontologies makes protein crystallisation
an ideal domain to explore the development of knowledge-intensive machine learn-
ing and data mining technologies directly over Semantic Web formalisms, and is the
primary motivation for the work of this thesis towards the development of the OWL-

MINER system [80]. In the next section, we will describe how data and knowledge in

Shttp:/ /www.xdx-ontology.org
Shttp://www.w3.org/ TR /owl-overview/
"http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
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this domain is captured, and how OWL-MINER is being used to analyse the data to

support crystallographers with their experimental analysis tasks.

7.2 Description Logic learning for protein crystallisation

Motivated by the use of Semantic Web technologies by the protein crystallisation
community for capturing experimental data and knowledge, we are currently work-
ing with the CSIRO C3 laboratory to install the OWL-MINER system to aid crystallo-
graphers with data analysis tasks. In this section, we will describe how experimental
data are captured under the XDX OWL ontology, how experimental data is enriched
with knowledge from other ontologies such as ChEBI OWL, and the application of
OWL-MINER to perform supervised learning over resultant combined knowledge
bases. We will then describe how these tasks can aid the crystallographers in design-
ing their experiments, and remark on how this technique can be applied to larger

collections of crystallography data in general.

7.2.1 Experimental Data and Knowledge Representation

In our work, protein crystallisation experiments are captured in RDF as data asser-
tions against concept and role names from the XDX OWL ontology. To illustrate an
example of an individual experiment, Figure presents a set of assertions to de-
scribe how the features of the experiment are captured against components of the
XDX OWL ontology.

Figure [7.4| partially describes a set of assertions about an individual experiment
consisting of a single drop in a hanging vapour diffusion experiment at 20° centi-
grade, containing 0.2M of magnesium acetate at pH 6.0, amongst other chemicals.
The experiment is attributed with two observations made on different days, one
where the observed state of the drop was clear, and another five days later indicating
the presence of crystalline structures.

The structure of experiments is amenable for representation by relational struc-
tures such as DLs, as each experiment may contain different sets of chemicals each
with their own properties from a set of several thousand chemicals. Furthermore,
supplementary data and knowledge exists outside of the domain of protein crystalli-
sation which can be added to enrich the experimental descriptions. One such data
source is the ChEBI OWL ontology which contains hierarchical and compositional

knowledge about chemical species which cover those used in crystallisation. For



§7.2  Description Logic learning for protein crystallisation 189

eo : Drop (e, double[20.0]) : atTempC
(e, m) : method m : HangingDropVaporDiffusion
(eo, co) : hasComponent co : Component
(co, s0) : hasConcentration so : Concentration
(so, M) : unitOfMeasure
(so,double(0.2]) : hasValue
(co, mgac) : hasChemical mgac : Chemical
(co,double[6.0]) : pH
(eo, 09) : hasObservation 0g : Observation
(00, clear) : observedState clear : State
(09, date[2014-12-14]) : atTime
(eo,01) : hasObservation 09 : Observation
(01, precipitate) : observedState  precipitate : State
(01,date[2014-12-19]) : atTime

Figure 7.4: A description of an individual protein crystallisation experiment ex-
pressed as assertions over concepts and roles from the XDX OWL ontology.

example, knowledge which can be added about magnesium acetate from ChEBI is

shown below in Figure

mgac : CHEBI_62964

CHEBI_62964 C 3hasFunctional Parent.(AceticAcid)
CHEBI_62964 C ShasPart.(MagnesiumAtom)
CHEBI_62964 T ShasPart.(Cation)

CHEBI_62964 C 3hasPart.(Anion)

CHEBI_62964 T 3hasMolecularWeight.(double[= 142.393])

Figure 7.5: Knowledge and data about the chemical compound magnesium ac-
etate from the ChEBI OWL ontology. These axioms describe how instances of
CHEBI_62964 refer to magnesium acetate which have part magnesium atom, a cation
and an anion (meaning the compound is a salt), is structurally related to acetic acid,
and that it has an average molecular weight of 142.393 g/mol.

The ChEBI ontology provides an identification scheme for chemicals and organ-
ises them into a classification hierarchy based on structural features, properties and
roles [38]. Adding extra information such as axioms from the ChEBI ontology to
a knowledge base containing protein crystallisation experiments provides new fea-
tures which can be leveraged by supervised learning systems such as OWL-MINER
to learn concepts for classifying groups of experiments based on such features. For
example, the ability to classify a collection of experiments which contain chemicals

of a certain class, or which contain a functional structure or part, might be an impor-
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tant predictor of a response like experimental failure. Extra quantitative data such as
the molecular weight of chemical species or their pH values can also be used in this
way. In the next section, we will describe how knowledge bases consisting of this
information can be used in conjunction with learning systems like OWL-MINER to
perform classification and subgroup discovery to aid crystallographers interpret the

results of their experiments.

7.3 Data Mining Protein Crystallisation Conditions

7.3.1 Single Target Experimentation

Given a new protein target to analyse, a crystallographer will often perform a number
of experiments with a so-called random screening approach which samples multiple
chemicals and conditions in a sparse manner. The purpose of these initial screens is
to ascertain the behaviour of the protein in a number of conditions and to locate leads
for further analysis, depending on the response of the protein to each condition. Such
screens can often consist of tens to hundreds of experiments which sample many dif-
ferent chemicals and conditions. Interpreting the space of parameters involved can
be a manual and time-consuming process [63]. Manual interpretation of the results
of such screens is usually performed in such a way that the best individual results are
singled out for fine-grained screening, such as incomplete factorial screening around
a very restricted set of chemicals and conditions, or grid screening which focuses on
a fixed set of chemicals and conditions while varying a small number of parameters
such as concentration or pH levels. This approach necessarily requires the protein
under consideration to have produced reasonable outcomes after initial screening to
permit further experimentation to proceed towards narrower sets of chemicals and
conditions. However, it is often the case that a protein will not crystallise after initial
random screens. In this case, the variety of responses must be manually interpreted
by the crystallographer who will then make an educated guess as to which experi-
ments to try next. When the responses are primarily negative, such as where most
experiments result in clear drops or drops containing precipitate, it is often unclear
which experiments are the best ones to try next amongst a large set of diverse exper-
iments.

To aid in the interpretation of the results of screening, several software packages
have been developed (e.g., AutoSherlock [69]) which visualise the experimental re-

sults, but do not provide the ability to perform automated clustering of experiments
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per result based on phase states. If computed automatically, such clustering has the
potential to provide valuable and rapid insight into complex multi-parameter combi-
nations affecting crystallisation for individual proteins [94]. By clustering in this way,
a crystallographer can determine which experimental parameters are most highly
correlated with certain outcomes which can inform how to proceed with further
experimentation, even when crystalline responses are not achieved. For example,
experiments which transition quickly from clear drops to precipitate are interpreted
as having conditions which force a protein sample directly into the unstable region
of phase space (Figure[7.3), a negative outcome. Understanding the primary factors
of the experiments which produce this result can aid a crystallographer in knowing
which chemicals and their concentrations or pH levels to avoid. Alternatively, exper-
iments which transition relatively slowly from clear to precipitate and are not associ-
ated with other negative outcomes such as skin or phase separation (Figure may
be interpreted as having passed from the stable region of phase space through labile
and metastable where crystal growth ought to occur and into the unstable region.
Such behaviour can be interpreted as positive, as it suggests the conditions for the
protein are nearly correct, and deserve further attention even though no crystalline
responses were produced. In this way, a crystallographer can make use of data min-
ing techniques to describe clusters of experiments over their features such as their
constituent chemicals and conditions which most highly correlate with known be-
haviours which are interpreted to be helpful or a hindrance to crystallogenesis. By
clearly elucidating these factors over a number of experiments, the crystallographer

may use this information to inform how further experiments should be carried out.

The descriptions of protein crystallisation experiments as shown in Section|7.2|are
ideally suited for processing by the OWL-MINER system which was developed pri-
marily for the purpose of interpreting results such as these. Given an initial screen of
experiments which represent a sparse sampling of the space of possible parameters
around chemical and conditions, OWL-MINER can be used to perform supervised
subgroup discovery over the experiments to determine which of the features most
highly correlate with certain responses. Subgroup discovery is ideally suited to this
task, as there may be isolated pockets of chemicals and conditions in the space of
parameters which correlate highly with certain responses but which may not cover
the full dataset. The hypotheses produced to describe subgroups which correlate
most highly with positive outcomes can then be used to guide further experimen-

tation, with the crystallographer focussing on fine-grained incomplete factorial or
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grid sampling which involve chemicals matching the descriptions. In Section we
present a real example where this kind of analysis was performed in retrospect over
a fully annotated and completed experiment for a single protein called orotic acid
hydrolase (§7.4.2).

As experimentation progresses towards sampling smaller areas of the parameter
space with a reduced number of chemicals and conditions, OWL-MINER can be also
used to perform supervised classification to infer hypotheses which are intended
to range over all experiments with certain responses. The use of DL learning with
systems like OWL-MINER are clearly amenable to these tasks as the results are com-
prehensible models which describe the parameter space directly in terms of chemi-
cals and conditions which the crystallographers can use to understand how further

experiments should be designed.

7.3.2 Multiple Target Interpretation

Given a large collection of experiments accounting for the conditions and responses
for a number of proteins, patterns in the global space of parameters can be inves-
tigated to determine which conditions are most strongly correlated with particular
responses. Indeed, this is precisely how most modern pre-manufactured crystallisa-
tion screening kits are produced, which is to analyse the most commonly successful
chemical conditions which have succeeded in crystallising a large number of pro-
teins in the past [74]. While such work has been undertaken over empirical data in
the BMCD [36], these data represent only positive outcomes extracted from publica-
tions which describe the final successful conditions used to achieve crystallogenesis
for each contributed protein, and ignore all other results such as intermediate be-
haviours or negative responses. Furthermore, the learning over this dataset did not
incorporate more general knowledge about the domain, such as that which is oth-
erwise provided by ChEBI around chemical classifications, structures and functions.
We anticipate that by incorporating such extra knowledge, that cluster descriptions of
experimental conditions over such terms may reveal properties which are influencing
crystallogenesis which have not been discovered before.

It is the ultimate goal of the XDX OWL Ontology Consortium to provide a stan-
dard nomenclature for capturing experimental conditions in a way in which such
data and knowledge can be integrated from a number of contributing sources as a
step toward this goal. The OWL-MINER system was designed to support analysis

directly over such a data and knowledge holding for mining commonly successful
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or unsuccessful conditions. Efforts are currently still ongoing to further develop the
XDX OWL ontology and supporting tools to facilitate their use by HTPC centres
which hold valuable data in heterogeneous formats and storage mechanisms which

aren’t otherwise easily shared.

7.4 The CSIRO Collaborative Crystallisation Centre (C3)

The CSIRO Collaborative Crystallisation Centre (C3) in Parkville, Melbourne is a
world leading protein crystallisation research facility. This centre is host to HTPC
machinery for automating the setup and observation of many crystallisation exper-
iments, and maintains a rigorous database of experimental descriptions and their
outcomes. We have partnered with the director of C3, Dr. Janet Newman, to investi-
gate the application of the OWL-MINER system to experimental data held by C3. To
support this task, a large amount of supporting software and infrastructure has been

put in place which we refer to as the X-PLORER system.

XDX [ X-PLORER \

OWL Web Server
4

Image Processing Cluster ChEBI
s e s | R

Figure 7.6: The architectural ecosystem of the infrastructure supporting the X-PLORER
system for the C3 laboratory.

Minstrel HT

Hypothesis
Visualiser

Figure 7.6/ shows a high-level architectural diagram outlining the major software
and hardware components which have been put in place to support the use of OWL-
MINER via the X-PLORER system. Automated experiment incubation and monitoring

hardware known as the Rigaku Minstrel HT™

system accepts plates containing mul-
tiple crystallisation experiments and uses a camera to take regular images of each
experiment. These images are then stored in a database which the crystallographers
can inspect with specialised software called CrystalTrak™. This software permits
crystallographers to view and label their experiments at each inspection time with
their interpretation of each response, such as clear, precipitate, skin, and so on. This

software also supports the design of new experimental screens based on manually
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entered sets of parameters chosen by the crystallographers for further experimenta-
tion, but necessarily requires that the crystallographers manually interpret the results
and select the space of parameters for further testing, which can be a complex and
time-consuming process.

To automate the process of analysing the response of the many experiments by
their images which are produced by the Minstrel system, generated images are
placed into distributed storage on a compute cluster. On this cluster are several
computer vision classifiers which have been trained to recognise certain features in
drop images [108, 107], and an ensemble learner is used to automatically attribute
labels to each image depending on the response identified. Automated labels are
then captured in a separate database labelled as ‘Bucket’ in Figure By providing
automated scoring for images, the crystallographers are free to focus on the task of
analysing the parameter space relative to the various responses. To support the latter
task, the X-PLORER system implements procedures for extracting data and knowledge
from both the ‘CT” and ‘Bucket’ databases which respectively contain the experimen-
tal descriptions and their responses. Once extracted, this data is transformed to RDF
under the XDX OWL ontology and stored in a Fuseki® triplestore database in prepa-
ration for analysis by OWL-MINER.

The X-PLORER system also maintains mappings between the chemical entities re-
ferred to in experiments in the ‘CT* database and standard terms and synonyms that
are used in other data sets, specifically ChEBI and PubChem. Using this data, in-
clusion axioms which classify chemicals and specify functional parts amongst other
knowledge is extracted from the ChEBI OWL ontology and added to the Fuseki
database of experimental descriptions, such as those shown in Figure Further-
more, any extra or missing quantitative data about chemicals is added from Pub-
Chem, which also serves to cross-reference values against existing data to indicate
possible errors, for example, where there is disagreement about the molecular weight
of a chemical substance. The process of extracting knowledge from the ChEBI on-
tology proceeds by identifying the concepts for which the chemicals used in experi-
ments are instances, and extracting all inclusion axioms which refer to these classes
up the classified subsumption hierarchy recursively until all relevant axioms are ex-
tracted. The collective expressivity of the axioms extracted from ChEBI OWL are
selected so as to not exceed £L, as the XDX OWL ontology is also expressed in £L,

resulting in a knowledge base for which classification is efficient to compute.

8Apache Jena Fuseki: |https://jena.apache.org/documentation/fuseki2/index.html
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Once entirely transformed to RDF under OWL, the experimental data from the
‘CT’ database and their combined automated and manual response labelling from
the ‘Bucket’ database can then be analysed directly with OWL-MINER. The X-PLORER
system supports the use of OWL-MINER in a number of ways which greatly simplify

user interaction.
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Figure 7.7: A screenshot of the X-PLORER system which allows crystallographers
to visualise their experiments, select training sets either manually or based on ex-
perimental responses, and to request subgroup descriptions from the OWL-MINER
system. While OWL-MINER produces DL concepts as hypotheses, the X-PLORER sys-
tem translates these into structured natural language. Each subgroup description is
also attributed with the strength of the score used, in this case the value for the X2
measure, and each are also paired with the set of experiments which are covered to
permit their visualisation in the main screen.

E

To use the X-PLORER system, a crystallographer logs in via http://crystallisation.
csiro.au (not publicly accessible) and enters a number of barcodes corresponding to
plates containing their experiments. The system then loads a visualisation of these
experiments by plate onto the screen as shown in Figure The software permits
the user to inspect the specific conditions of each experiment and can highlight them
based on automatically or manually labelled responses. By selecting a set of exper-
iments from a number of plates, the user can then select a positive and negative
training set for supervised learning based on a manual selection, or based on a com-
mon set of responses. For example, the user can select a collection of drops with
crystalline and precipitant responses as the set of positives, and clear drops as the

set of negatives. Once a training set is identified, the user can select parameters for
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OWL-MINER to begin learning hypotheses, from the problem to be solved (classifica-
tion or subgroup discovery), the measure to be used (x?, weighted relative accuracy,
etc.), minimum thresholds on the measure, and maximum limits on the number of

hypotheses to locate and time spent searching for them.

Of the options that can be selected, OWL-MINER also supports the explicit in-
clusion or exclusion of ontology terms to use in the generation of hypotheses. It is
planned to permit the user of X-PLORER to make such selections on top of a core
set of features such as chemical species which form the basis of terms with which
OWL-MINER will attempt to construct hypotheses, for example, only pH levels. In
this way, the user is free to use OWL-MINER to explore whether there are such con-
cepts which have strong correlations to experiments with certain responses to test
hypotheses. Otherwise, the OWL-MINER system can be used without exclusions and
can be used to derive any and all hypotheses which meet the problem specification

provided by the user.

Once OWL-MINER begins processing over a set of labelled experiments, the cur-
rent set of best hypotheses are returned to the X-PLORER interface on a continual basis
to be visualised on the web-page until OWL-MINER terminates. However, the raw
DL concept descriptions are not used directly, as the intended users are potentially
crystallographers with no knowledge of DLs. While a DL concept expression may be
easily understood with minimal training, the X-PLORER system implements a novel
translation mechanism which maps DL concepts to structured natural language ex-
pressions as can be seen in Figure These expressions are nested and are tightly
linked to the DL concepts returned, and are attributed with links to source infor-
mation, such as the link to reveal more information about hydroxyether compounds
which takes the user to the ChEBI website. The method used is based on templating,
which is to recognise certain DL concept fragments and to map these to structured

English representations for rendering as HTML. For example, the concept:

FhasComponent.(Component N
FhasChemical.(Chemical M CHEBI_467891
JhasMolecularWeight.(double[(> 400 A < 1500) V (> 1500 A < 8000)])) M
JhasConcentration.(Concentration I
JhasValue.(double[> 1.2 A < 28]) M
JunitOfMeasure.({w/v%}))

is simplified, condensed and represented textually as:
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A chemical of:
e Type: hydroxyether, and;
e Molecular weight: [400, 8000] and # 1500, and;

e Concentration: [1.2, 28] w/v%.

the latter clearly based directly on the concept itself, however is more readable.
Note the replacement of the concept CHEBI_46789 with its label ‘hydroxyether’. The
implementation of this translation method is problem-specific, as it is based on hard-
coded rules around the kinds of DL concept fragments which are expected to be
produced by OWL-MINER over the XDX OWL and ChEBI OWL terminologies.

When a user highlights a particular concept found by OWL-MINER in the X-plorer
interface, the set of experiments which are covered by the concept are highlighted,
along with the classification designation of each experiment relative to the concept,
namely all true and false positives, and all true and false negatives. This provides
the user with a quick visual guide as to the appearance of which experiments were
covered by the concept or not relative to the nominated positive and negative training

set.

7.4.1 Optimisation Screen Design

The role of OWL-MINER in the X-PLORER system is to aid the crystallographer in
identifying the factors which are significantly correlated with particular experimen-
tal responses. Once identified, the crystallographer may then wish to create new
experimental screens around the conditions they have identified as being suitable for
further analysis. This step is known as optimisation, as given a set of experiments
which did not produce a usable protein crystal structure, parameters are selected for
modification towards optimising the protein conditions towards the growth of high-

quality crystal structures. The existing CrystalTrak™

software supports the creation
of new experiments by plate designs around the selection of one or more existing
experiments by creating new grid, random, or additive design methods across a set
of selected parameters.

By selecting a number of experiments which were covered by a concept produced
by OWL-MINER as being strongly correlated with particular outcomes, the features
described by the concept give an indication of which parameters should be varied in

the new screen. For example, if pH was identified as a feature in a concept which
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Figure 7.8: A screenshot of the Rigaku CrystalTrak™ system for creating optimisa-
tion screens based on a number of experimental parameters.

was highly correlated with a positive response such as crystals or suitable precipitate,
this can be selected for variation over the range as suggested by the constraint on this
feature in the concept. Furthermore, if OWL-MINER produced a concept which was
correlated highly with negative responses such as unsuitable precipitate or skin, these
rules can be combined in the screen design process to ensure that the newly sampled
space does not overlap. Designing screens by integrating knowledge determined by
OWL-MINER in this way supports crystallographers in more closely and explicitly
identifying areas of parameter space which are suitable for further analysis, and is a
capability which is not offered by CrystalTrak™, Formulatrix RockMaker™?, or any

other crystallisation design tool known to the author.

9Formulatrix RockMaker™: http: //formulatrix.com/protein-crystallization /products /rock-maker /
index.html
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7.4.2 Orotic Acid Hydrolase

A recent project conducted at the C3 sought to determine the structure of a biolog-
ical macromolecule called orotic acid hydrolase (OAH)'. Samples of OAH were used
in a number of crystallisation experiments, 768 in initial random screening and a fur-
ther 1,920 in optimisation screening. Notably, every experiment in this project was
manually annotated by an expert crystallographer so as to provide labels to support
automated supervised learning.

During the initial random screening phase, 19 of the 768 experiments produced
responses which were favourable towards crystallisation, where the remaining 749
experiments were not considered interesting for further analysis. In order to deter-
mine the primary factors which were correlated with near-crystalline responses over
others, we ran an experiment with OWL-MINER to perform supervised subgroup
discovery with the x> measure with a p-value thresholded at 10-°. The initial popu-
lation consisted of 19 near-crystalline experiments labelled as positives (P), and 749
non-crystalline experiments labelled as negatives (IN). OWL-MINER quickly produced
several simple hypotheses which are listed in Table

No. | Hypothesis Cover x> p-value
1. | Drop N 3hasComponent.(Component N P:5/19 1.0 x 10720
JhasChemical.(CHEBI_62964)) N: 3/749
2. | Drop N 3hasComponent.(Component I P:13/19 | 22x 10716
JhasChemical.(CHEBI_36364)) N: 63/749
3. | Drop M 3hasComponent.(Component I P:9/19 5.7 x 10711
hasChemical.(CHEBI_33975)) N: 47/749
4. Drop M 3hasComponent.(Component 1 P:4/19 45 %1077
IhasChemical.(CHEBI_35156)) N: 16/749
5. Drop M FhasComponent.(Component 1 P:8/19 6.1 x 1078
IhasChemical.(CHEBI_23114 M N: 52/749
—CHEBI_26710 M =~CHEBI_31206T1
JhasMolWt.(double[42.39,136.28]) I
JpH.(double[0.0,7.5])))

Table 7.1: Hypotheses generated by OWL-MINER to describe the factors strongly
correlated to experiments with crystalline responses for orotic acid hydrolase (OAH).

The hypotheses listed in Table [7.1| describe to the crystallographer that experiments

100rotic acid hydrolase: https://www.ebi.ac.uk/pdbe/entry/pdb/5hy0
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containing:

1. Magnesium acetate (CHEBI_62964) tended to crystallise more often than not
(5:3);

2. Experiments containing any chemical belonging to the class of alkaline earth
salts (CHEBI_36364), which includes magnesium and calcium salts, tended to
be correlated more strongly with crystalline responses (13/19, 68.4%) than non-
crystalline responses (63/749, 8.4%).

3. Magnesium salts (CHEBI_33975) and calcium salts (CHEBI_35156) were corre-
lated more strongly with crystalline responses (magensium: 9/19, 47.4%,; cal-
cium: 4/19, 21%) than non-crystalline responses (magnesium: 47/749, 6.2%;
calcium: 16/749, 2.1%).

4. Chloride salts (CHEBI_23114) having a molecular weight between [42.39, 136.28|
and a pH between [0.0,7.5] except specifically sodium chloride (CHEBI_26710)
and ammonium chloride (CHEBI_31206) were correlated more strongly with

crystalline responses (8/19, 42.1%) than non-crystalline responses (52/749, 6.9%).

These results clearly indicate that specific experimental features such as certain chem-
ical species (i.e., magnesium, calcium and chloride salts) and particular molecular
weight and pH ranges were significant to achieve near-crystalline conditions. In this
project, the expert crystallographer chose to proceed after initial random screening
with fine-grained optimisation sampling around variations of experiments contain-
ing magnesium and calcium salts after visual inspection of the results. Ultimately,
crystals of sufficient quality for analysis were produced in this phase which resolved
the structure of OAH with experimental conditions which included magnesium ac-

etate.

Interestingly, the last hypothesis in Table indicated that a number of chloride
salts were strongly correlated with near-crystalline responses, however these were
not explicitly chosen by the crystallographer for analysis in optimisation screening.
However, as magnesium salts were chosen for optimisation, magnesium chloride was
included (which is a magnesium, chloride and alkaline earth salt). Post-hoc analy-
sis of the optimisation screen results revealed that experimental conditions which
included magnesium chloride correlated most strongly with crystalline conditions
over any other condition (116 crystalline responses our of a total of 580 containing
magnesium chloride, or 20%), whereas conditions with calcium salts did not perform
nearly as well (8 crystalline responses out of a total of 309 containing any calcium

salts, or 0.03%). The crystallographers conceded that if they could have determined
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that chloride salts were strongly correlated with favourable results as is shown by
OWL-MINER over initial screening, that these chemicals should have been included
in more optimisation experiments. The identification of influential classes of chem-
icals through the use of the CheBI OWL ontology, along with constraints defining
specific sets of chemicals over properties in the XDX OWL ontology, is seen as a
powerful mechanism by which to describe possible areas of the space of chemicals
which can be focused on for experimentation which permit the crystallographer to

make more informed choices.

7.5 Current and Future Work

Currently, the X-PLORER system is under active development. The steps which take
generated images for automated classification on the CSIRO compute cluster have
only recently been implemented, and the labelling data are being used to attribute
particular responses to each experiment based on sequences of their observations,
such as transitioning from clear to precipitate. Furthermore, the step which takes the
set of experiments identified as being covered by a DL concept by OWL-MINER for
use in optimisation screen design is incomplete. Shortly, crystallographers working
at C3 will be able to take the concepts generated by OWL-MINER and use them
directly to interpret per-protein results and to inform the construction of optimisation
screens. Once this is achieved, crystallisation experiments which are set up on the
basis of this method can be evaluated against past success rates based on manual
processing to determine if the efficiency of experimentation has improved, as we
reasonably anticipate.

An interesting avenue for future work in this space is to apply OWL-MINER over
the ever-growing RDF dataset of experiments in the Fuseki database. With very
many experiments for a variety of proteins covering a range of responses considered
both negative and positive, OWL-MINER can be used to produce concepts which cor-
relate highly with success or failure across many different proteins as discussed in
Section Performing this analysis may reveal experimental parameters which
are interesting for protein crystallography generally, such as revealing correlations
between the use of sets of parameter settings and certain responses. As this is the
motivating goal of the XDX Ontology Consortium, performing this step to produce
interesting results on a single laboratory basis is a worthwhile step towards per-

suading other laboratories to adopt our approach, and to potentially combine their
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experimental data which has been standardised under the ontology for a broader

data mining effort.

7.6 Conclusion

This chapter has explored the application of the DL learning techniques developed
in this thesis and implemented as OWL-MINER in a real-world setting. Indeed, the
development of the novel methods in this thesis and the implementation of OWL-
MINER was done to support this domain specifically. While work in this area is
still progressing, the approach holds great promise for improving the efficiency and
effectiveness of experimentation in protein crystallography. This work has become
particularly important of late, not only because of the inherent inefficiency of protein
crystallisation given the high demand for protein structures, but because the emerg-
ing method of cryo-electron microscopy [52] is capable of producing structures for
large biological molecules in a fraction of the time typically taken by protein crystalli-
sation methods. As the analysis of small biological targets is currently only possible
with X-ray crystallography, crystallographers are even more motivated to improve
the rate at which protein crystallisation can be performed in order to keep pace with

these new methods.



Chapter 8

Conclusions and Future Work

We conclude this thesis with a summary of our research contributions (§8.1) and
directions for future work (§8.2).

8.1 Thesis Contributions

In this thesis, we investigated the topic of efficient concept learning over large knowl-
edge bases with highly expressive DL languages, such as SROZQ(D) which un-
derpins OWL2-DL. In particular, our goal was to improve on the performance and
scalability of modern DL learning tools so as to improve their applicability for solv-
ing a variety of machine learning and data mining problems. To this end, our novel

contributions are:

e The formalisation of the problem of learning from closed-world interpreta-
tion in DLs (§3.5 Definition3.5.1) and the definition of a novel context-specific
closed-world interpretation suitable for DL learning (§4.2.1} Definition[4.2.8) [80];

e Practical methods for DL learning that use a potentially infinite context-specific
closed-world interpretation in the construction and use of a context graph (§4.2.2]

Definition [4.2.12));

e The formalisation of downward (p;) and upward (v;) context-specific refine-
ment operators which are designed to be highly efficient when structuring ex-
pressive DL concept spaces (§4.1);

e The development of a novel splitting algorithm for refining numerical concrete

domains that leverages the context graph and context-specific interpretations

(§4.4, Algorithm [6));

203
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e The development of a versatile, general, memory bounded, top-k stochastic

beam search algorithm for DL learning that employs our novel refinement op-

erators (§5.1.2) Algorithm [7) [80, 81];

e Various improvements to a utility function (Definition |5.1.5), method of cover-
age testing (Algorithm [11)), and learning (Algorithm [7) based on an analysis of
the convexity of performance measures (§5.1.1.2) [81];

e Methods to mitigate redundancy and improperness of refinement with practi-

cal strategies around concept normalisation (§5.3.1) and suspension in refine-

ment (§5.3.2);

e The application of DL learning to the real-world problem of protein crystallisa-
tion (Chapter[7) [82].

Our implementation OWL-MINER was constructed to verify the performance of the
novel methods presented in this thesis. Chapter [f] presented results of our analysis
of the performance of OWL-MINER against the state-of-the-art DL learning system
called DL-LEARNER, currently the only other comparable system. We found that
OWL-MINER outperformed DL-LEARNER on several significant benchmark problems.
Furthermore, OWL-MINER offers additional modes of learning than DL-LEARNER
by including top-k and stochastic beam search for both classification and subgroup

discovery with a variety of convex measures including x2, WRA, and MCC.

We have been motivated to develop improved methods of DL learning by real-
world domains in the life sciences such as protein crystallisation which was discussed
in our case study in Chapter [/} Domains which integrate large amounts of RDF data
and knowledge with RDFS and OWL ontologies which have a need to derive patterns
from the data are ideally suited to the application of our methods, especially where
such patterns need to be comprehensible by their users. In the domain of protein
crystallisation, OWL classes which are induced from experimental data captured as
RDF are helping crystallographers understand more about their scientific domain,

and will aid in their experimental discovery process.
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8.2 Future Work

8.2.1 Application Areas

8.2.1.1 Life Sciences

As discussed in Chapter [/, we are currently deploying OWL-MINER as a real-time
analytical tool for aiding crystallographers in performing scientific experimentation
with the development of the X-PLORER system. Our experience thus far suggests that
OWL-MINER is an ideal technology for aiding domain experts who may not have
experience with machine learning or data mining. In particular, the combination
of the X-PLORER and OWL-MINER systems will enable its users to clearly under-
stand patterns in their data in domain-specific language which can lead to actionable
knowledge and measurable gains in efficiency. The domain of protein crystallisation
is also interesting from the perspective that the OWL-MINER system is deployed to
operate in real-time, as well as in an off-line batch mode. In off-line processing, we
aim to incorporate more experimental datasets from laboratories other than C3, such
as the Hauptman-Woodward Medical Research Institute’s historical crystallisation

dataset which can be explored at: http://xtuition.org!

Other domains in which OWL-MINER could be applied in the life sciences are
ones which collate rich experimental data and knowledge-based datasets in RDF and
OWL for batch-style analysis, such as the Kidney and Urinary Pathway Knowledge
Base (KUPKB) [49]. The KUPKB contains a large amount of RDF data representing
the results of clinical tests and bioassays in nephrology, with a view to supporting
the exploration and analysis of the data to find clinical indicators of various kidney

diseases.

The abundance of data being generated and described in the life sciences using
RDF and OWL is evidenced by the ever growing number of ontologies hosted by the
NCBI BioPortal (http://bioportal.bioontology.org). The BioPortal currently references
524 distinct OWL ontologies covering 7.8 million classes across domains as diverse
as agriculture, biological anatomy, genetics and medicine. Tools like OWL-MINER
and interfaces like X-PLORER can play an important role in analysing knowledge rich
data sets in these domains directly, without requiring transformation to other data

models or formalisms for analysis with different machine learning tools.
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8.2.1.2 Integration with Temporal and Spatial Data

The W3C Spatial Data on the Web Working Group! is currently standardising vocab-
ularies for spatial and temporal data for use on the web with RDF and OWL [101]].
As the prevalence of such data increases, we anticipate that learning concepts over
such data with spatial and temporal relationships will become important. However,
deduction with spatial and temporal properties lies outside the scope of traditional
DL reasoning algorithms. For example, the Region Connection Calculus (RCC) [79]
and Allen’s Interval Calculus (AIC) [1] require specialised algorithms for the effi-
cient deduction of relationships and prior exhaustive enumeration is an intractable
problem.

As OWL-MINER works by materialising all known inferences up front into a
closed-world knowledge base, this approach is not feasible with datasets which rely
on inference in RCC, AIC, or similar. For this reason, it would be interesting to in-
vestigate how one may incorporate efficient algorithms for computing spatial and
temporal relationships between objects, such as those by Renz [83], into the coverage

checking methods for learning which we have developed.

8.2.2 Improvements to OWL-MINER
8.2.2.1 Handling Incomplete Data

The methods presented in this thesis rely on the assumption that an OWL knowledge-
base K is consistent relative to its closed-world interpretation 7 (Definition [3.2.1T).
As discussed in Section certain problems may arise from learning from in-
terpretations as per Definition when J [~ T, namely, when the closed-world
interpretation is not a model of the TBox. This situation appears to arise when par-
ticular assertions of data to the ABox describing examples are missing with respect to
axioms in the TBox. OWL-MINER does not recognise when a closed-world interpreta-
tion used for learning is not a model of the TBox, and therefore may induce concepts
which are unsatisfiable with respect to the TBox and its open-world interpretation 7
(Example 3.5.4), or induce concepts which appear to solve learning problems relative
to J but which do not perform similarly relative to Z (Example [3.5.6).

Further work is required to understand the impact of learning in DL knowledge-
bases by closed-world interpretation. As discussed in Section several sug-

gestions for strategies to mitigate these problems may be interpolating missing data

ISpatial Data on the Web Working Group: https://www.w3.org/2015/spatial/


https://www.w3.org/2015/spatial/

8.3 OQutlook 20
§8.3 7

with statistical methods, or excluding whole examples or parts thereof. Such meth-
ods could be used to ensure that learned concepts are both consistent with back-
ground knowledge in a TBox and that their performance measures can be inter-
preted equally in both closed-world and open-world interpretations. Addressing
this problem would ensure that concepts learned by closed-world interpretation in
DL knowledge bases could be incorporated back into the knowledge-base they were

induced over without causing the knowledge base to become inconsistent.

8.2.2.2 Leveraging Labelled Data in Supervised Learning

As we saw in Section our method for learning over concrete domains made
use of the labels attributed to examples from which they were reachable by instance
chains (Definition 4.2.13). This permitted us to define sensible splitting points when
refining numerical range restrictions on the assumption that concepts were to be
generated for the purpose of distinguishing examples labelled with one label over
all others, such as when solving a machine learning classification problem. A similar
approach could be adopted to analyse the distribution of labels amongst instances
in local domains over abstract individuals (Definition .2.5). If such a distribution
could be deduced, a context-specific refinement operator such as p; could leverage
this information to decide whether to refine to certain subexpressions based on the
primary label of the examples they are expected to cover. We anticipate that such an
approach would further reduce the search space of concepts considered by p; which

ought to further improve the efficiency of the learning methods we have developed.

8.3 Outlook

DL learning has emerged as a powerful method of producing comprehensible de-
scriptions of patterns in RDF/OWL knowledge bases. As the prevalence of RDF
and OWL-based data and knowledge on the web continues to increase, DL learning
methods which scale to even greater amounts of data and knowledge are increasingly
important. Similarly, the need for rich OWL ontologies to describe the abundance
of RDF data will increase, and DL learning tools are ideally suited to support their

development.
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